PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m314.
Published online 2008 January 9. doi:  10.1107/S1600536807068511
PMCID: PMC2960236

Aqua­bis(nicotinamide-κN)(thio­cyanato-κN)copper(II)

Abstract

In the title compound, [Cu(NCS)2(C6H6N2O)2(H2O)], the Cu atom adopts a square-based pyramidal CuN4O coordination, with the water O atom in the apical position. The pairs of N-bonded nicotinamide ligands and thio­cyanate anions in the basal plane are in a trans configuration. In the crystal structure, the mol­ecules are connected into sheets by N—H(...)O and O—H(...)O hydrogen bonds.

Related literature

For related literature, see: Beatty (2001 [triangle]); Aakeröy et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m314-scheme1.jpg

Experimental

Crystal data

  • [Cu(NCS)2(C6H6N2O)2(H2O)]
  • M r = 441.97
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m314-efi1.jpg
  • a = 11.078 (5) Å
  • b = 8.950 (4) Å
  • c = 18.702 (9) Å
  • β = 90.333 (8)°
  • V = 1854.3 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.43 mm−1
  • T = 293 (2) K
  • 0.42 × 0.35 × 0.30 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.542, T max = 0.663
  • 10592 measured reflections
  • 4041 independent reflections
  • 3292 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.090
  • S = 1.07
  • 4041 reflections
  • 236 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Bruker, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068511/hb2684sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068511/hb2684Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the President’s Foundation of South China Agricultural University (grant Nos. 2006X013, 2007Y006 and 2007 K031) for financial support.

supplementary crystallographic information

Comment

Due to their inherent coordination and hydrogen bonding donor/acceptor functionalities, nicotinamide ligands have been used in crystal engineering to construct extended frameworks sustained both by hydrogen bonds and coordination bonds (Beatty 2001; Christer et al., 2004). In this paper, we report the synthesis and crystal structure of the title compound, (I).

In compound (I), the metal center occupies a general position, and is coordinated with four nitrogen atoms from two trans-nicotinamide ligands and two trans-NCS anions in a square-planar geometry, as shown in Fig 1. The amide moieties are oriented in same directions. The two pyridine rings coordinated to the Cu centre are twisted by 3.63 (2)°. The distance between Cu center and the O atom of the aqua ligand is 2.442 (4) Å, which suggests a weak non-covalent interaction (Table 1). The Cu complex units are connected via N—H···O hydrogen bonds in a head-to-head fashion, resulting in chains in the crystal. The chains are further linked via O—H···O hydrogen bonds between the coordinated water molecules and amide groups to lead to infinite sheets, as shown in Fig 2.

Experimental

CuCl2.6H2O (1 mmol), nicotinamide (2 mmol) and NaNCS (1 mmol) were dissolved in water and blue blocks of (I) were obtained by slow evaporation at room temperature about 5 days in 82% yield.

Refinement

The H atoms attached to C or N atoms were placed in idealized positions (C—H = 0.93 Å, N–H = 0.86 Å), and refined as riding with Uiso(H) = 1.2Ueq(C or N).

The O-bound H atoms were located in difference maps and refined as riding in their as-found relative positions with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 40% probability level (arbitrary spheres for the H atoms).
Fig. 2.
The layered hydrogen-bonded network in (I) viewed down the b axis direction. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cu(NCS)2(C6H6N2O)2(H2O)]F000 = 900
Mr = 441.97Dx = 1.583 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10592 reflections
a = 11.078 (5) Åθ = 12–18º
b = 8.950 (4) ŵ = 1.43 mm1
c = 18.702 (9) ÅT = 293 (2) K
β = 90.333 (8)ºBlock, blue
V = 1854.3 (15) Å30.42 × 0.35 × 0.30 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer4041 independent reflections
Radiation source: fine-focus sealed tube3292 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.019
T = 293(2) Kθmax = 27.2º
ω scansθmin = 2.5º
Absorption correction: Multi-Scan(SADABS; Bruker, 1997)h = −14→14
Tmin = 0.542, Tmax = 0.663k = −11→8
10592 measured reflectionsl = −23→23

Refinement

Refinement on F2Hydrogen site location: difmap and geom
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031  w = 1/[σ2(Fo2) + (0.045P)2 + 0.9888P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.35 e Å3
4041 reflectionsΔρmin = −0.36 e Å3
236 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (5)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.70192 (3)0.10898 (3)0.092940 (14)0.03511 (11)
S10.56142 (6)−0.14977 (7)−0.11161 (3)0.04101 (16)
S20.72370 (6)0.27895 (8)0.33102 (3)0.04644 (17)
O10.96149 (19)−0.1681 (2)0.29467 (12)0.0631 (6)
O20.96200 (17)0.76310 (19)0.03689 (11)0.0528 (5)
O30.91522 (15)0.06510 (18)0.06824 (9)0.0398 (4)
H3A0.9289−0.02710.05370.048*
H3B0.94610.11640.03420.048*
N10.70065 (17)−0.0949 (2)0.14278 (10)0.0354 (4)
N20.8973 (2)−0.3974 (3)0.32101 (14)0.0633 (7)
H2A0.9542−0.41070.35190.076*
H2B0.8453−0.46700.31330.076*
N30.72932 (17)0.3169 (2)0.04894 (10)0.0349 (4)
N41.0166 (2)0.5956 (2)0.12020 (13)0.0503 (6)
H4A1.07550.65080.13460.060*
H4B1.00360.51070.14020.060*
N50.65964 (18)0.0179 (2)0.00029 (10)0.0391 (4)
N60.7224 (2)0.2002 (2)0.18720 (11)0.0467 (5)
C10.7870 (2)−0.1250 (3)0.19112 (12)0.0351 (5)
H1A0.8483−0.05540.19810.042*
C20.7894 (2)−0.2552 (3)0.23123 (12)0.0345 (5)
C30.6977 (2)−0.3586 (3)0.22028 (13)0.0394 (5)
H3C0.6965−0.44750.24600.047*
C40.6086 (2)−0.3276 (3)0.17083 (15)0.0451 (6)
H4C0.5462−0.39520.16290.054*
C50.6128 (2)−0.1952 (3)0.13314 (13)0.0394 (5)
H5A0.5523−0.17510.09980.047*
C60.8898 (2)−0.2704 (3)0.28559 (13)0.0404 (5)
C70.6561 (2)0.3698 (3)−0.00225 (14)0.0429 (6)
H7A0.59260.3104−0.01820.052*
C80.6714 (3)0.5085 (3)−0.03205 (15)0.0508 (7)
H8A0.61800.5431−0.06680.061*
C90.7665 (2)0.5957 (3)−0.00991 (14)0.0447 (6)
H9A0.77920.6889−0.03050.054*
C100.8437 (2)0.5437 (2)0.04359 (12)0.0340 (5)
C110.8209 (2)0.4028 (2)0.07201 (12)0.0335 (5)
H11A0.87100.36690.10820.040*
C120.9465 (2)0.6412 (2)0.06743 (14)0.0379 (5)
C130.6193 (2)−0.0526 (2)−0.04580 (12)0.0326 (5)
C140.7230 (2)0.2317 (2)0.24690 (13)0.0353 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.04718 (19)0.02743 (16)0.03065 (17)−0.00594 (12)−0.00671 (12)0.00229 (10)
S10.0488 (4)0.0379 (3)0.0363 (3)−0.0021 (3)−0.0041 (3)−0.0064 (2)
S20.0540 (4)0.0510 (4)0.0343 (3)0.0064 (3)−0.0001 (3)−0.0033 (3)
O10.0675 (13)0.0435 (11)0.0777 (15)−0.0095 (10)−0.0353 (11)0.0047 (10)
O20.0603 (12)0.0309 (9)0.0673 (13)−0.0082 (8)0.0081 (10)0.0094 (8)
O30.0437 (9)0.0324 (8)0.0432 (9)−0.0031 (7)0.0032 (7)0.0007 (7)
N10.0378 (10)0.0320 (10)0.0364 (10)−0.0048 (8)−0.0049 (8)0.0045 (8)
N20.0633 (16)0.0509 (15)0.0754 (18)−0.0085 (12)−0.0333 (14)0.0199 (12)
N30.0431 (11)0.0284 (9)0.0331 (10)−0.0021 (8)−0.0024 (8)0.0022 (8)
N40.0463 (12)0.0393 (12)0.0653 (15)−0.0105 (10)−0.0087 (11)0.0048 (10)
N50.0452 (11)0.0387 (11)0.0333 (10)−0.0053 (9)−0.0055 (8)−0.0001 (8)
N60.0654 (14)0.0382 (11)0.0364 (12)−0.0099 (10)−0.0068 (10)0.0004 (9)
C10.0358 (12)0.0320 (11)0.0376 (12)−0.0039 (9)−0.0038 (9)0.0025 (9)
C20.0369 (12)0.0320 (11)0.0346 (12)0.0016 (9)0.0000 (9)−0.0008 (9)
C30.0448 (13)0.0309 (12)0.0423 (13)−0.0025 (10)−0.0019 (10)0.0066 (10)
C40.0436 (13)0.0375 (13)0.0541 (15)−0.0115 (11)−0.0082 (11)0.0054 (11)
C50.0392 (12)0.0364 (12)0.0425 (13)−0.0037 (10)−0.0089 (10)0.0043 (10)
C60.0431 (13)0.0376 (13)0.0405 (13)0.0050 (10)−0.0055 (10)−0.0007 (10)
C70.0502 (14)0.0362 (13)0.0423 (14)−0.0020 (11)−0.0104 (11)0.0031 (10)
C80.0602 (16)0.0420 (14)0.0498 (15)0.0032 (12)−0.0162 (13)0.0090 (12)
C90.0555 (15)0.0311 (12)0.0475 (15)0.0021 (11)−0.0011 (12)0.0092 (10)
C100.0392 (12)0.0259 (10)0.0368 (12)0.0032 (9)0.0061 (9)−0.0006 (9)
C110.0379 (12)0.0264 (11)0.0362 (12)−0.0002 (9)−0.0012 (9)0.0028 (9)
C120.0384 (12)0.0263 (11)0.0492 (14)−0.0007 (9)0.0114 (10)−0.0009 (10)
C130.0363 (11)0.0287 (11)0.0329 (11)0.0008 (9)0.0018 (9)0.0049 (9)
C140.0402 (12)0.0270 (11)0.0386 (13)−0.0017 (9)−0.0039 (10)0.0040 (9)

Geometric parameters (Å, °)

Cu1—N61.955 (2)N5—C131.156 (3)
Cu1—N51.969 (2)N6—C141.151 (3)
Cu1—N12.049 (2)C1—C21.386 (3)
Cu1—N32.058 (2)C1—H1A0.9300
Cu1—O32.442 (4)C2—C31.389 (3)
S1—C131.635 (2)C2—C61.509 (3)
S2—C141.629 (3)C3—C41.377 (3)
O1—C61.223 (3)C3—H3C0.9300
O2—C121.244 (3)C4—C51.380 (3)
O3—H3A0.8821C4—H4C0.9300
O3—H3B0.8574C5—H5A0.9300
N1—C51.336 (3)C7—C81.372 (4)
N1—C11.340 (3)C7—H7A0.9300
N2—C61.318 (3)C8—C91.373 (4)
N2—H2A0.8600C8—H8A0.9300
N2—H2B0.8600C9—C101.393 (3)
N3—C71.337 (3)C9—H9A0.9300
N3—C111.342 (3)C10—C111.392 (3)
N4—C121.317 (3)C10—C121.501 (3)
N4—H4A0.8600C11—H11A0.9300
N4—H4B0.8600
N6—Cu1—N5172.90 (9)C4—C3—H3C120.5
N6—Cu1—N187.87 (9)C2—C3—H3C120.5
N5—Cu1—N191.70 (9)C3—C4—C5119.3 (2)
N6—Cu1—N388.06 (9)C3—C4—H4C120.3
N5—Cu1—N393.28 (8)C5—C4—H4C120.3
N1—Cu1—N3171.32 (8)N1—C5—C4122.4 (2)
O3—Cu1—N187.25 (7)N1—C5—H5A118.8
O3—Cu1—N385.68 (7)C4—C5—H5A118.8
O3—Cu1—N589.57 (7)O1—C6—N2122.5 (2)
O3—Cu1—N697.49 (8)O1—C6—C2120.1 (2)
H3A—O3—H3B101.7N2—C6—C2117.4 (2)
C5—N1—C1118.2 (2)N3—C7—C8122.4 (2)
C5—N1—Cu1122.97 (16)N3—C7—H7A118.8
C1—N1—Cu1118.66 (15)C8—C7—H7A118.8
C6—N2—H2A120.0C7—C8—C9119.2 (2)
C6—N2—H2B120.0C7—C8—H8A120.4
H2A—N2—H2B120.0C9—C8—H8A120.4
C7—N3—C11118.8 (2)C8—C9—C10119.6 (2)
C7—N3—Cu1121.07 (16)C8—C9—H9A120.2
C11—N3—Cu1120.14 (15)C10—C9—H9A120.2
C12—N4—H4A120.0C11—C10—C9117.7 (2)
C12—N4—H4B120.0C11—C10—C12123.5 (2)
H4A—N4—H4B120.0C9—C10—C12118.8 (2)
C13—N5—Cu1166.17 (19)N3—C11—C10122.3 (2)
C14—N6—Cu1167.6 (2)N3—C11—H11A118.9
N1—C1—C2123.1 (2)C10—C11—H11A118.9
N1—C1—H1A118.5O2—C12—N4122.2 (2)
C2—C1—H1A118.5O2—C12—C10118.7 (2)
C1—C2—C3118.0 (2)N4—C12—C10119.1 (2)
C1—C2—C6116.9 (2)N5—C13—S1179.0 (2)
C3—C2—C6125.1 (2)N6—C14—S2179.1 (2)
C4—C3—C2119.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.881.942.815 (3)171
O3—H3B···O2ii0.862.002.848 (3)172
N2—H2A···O3iii0.862.092.944 (3)176
N4—H4B···O1iv0.862.052.857 (3)157

Symmetry codes: (i) x, y−1, z; (ii) −x+2, −y+1, −z; (iii) −x+2, y−1/2, −z+1/2; (iv) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2684).

References

  • Aakeröy, C. B., Desper, J. & Valdés-Martínez, J. (2004). CrystEngComm, 6, 413–418.
  • Beatty, A. M. (2001). CrystEngComm, 3, 1–13.
  • Bruker (1997). SMART (Version 5.6), SAINT (Version 5.06A), SADABS (Version 2.1) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography