PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o432.
Published online 2008 January 11. doi:  10.1107/S1600536807068158
PMCID: PMC2960235

1,2,3,4-Tetra­hydro­isoquinoline-2-sulfonamide

Abstract

The title compound, C9H12N2O2S, is a useful precursor of a variety of modified sulfonamide mol­ecules. Due to the importance of these mol­ecules in biological systems (antibacterials, antidepressants and many other applications), there is a growing inter­est in the discovery of new biologically active compounds. In the title compound, the mol­ecules are linked by N—H(...)O inter­molecular hydrogen bonds involving the sulfonamide function to form an infinite two-dimensional network parallel to the (001) plane.

Related literature

For related literature, see: Berredjem et al. (2000 [triangle]); Lee & Lee (2002 [triangle]); Martinez et al. (2000 [triangle]); Xiao & Timberlake (2000 [triangle]); Esteve & Bidal (2002 [triangle]); Soledade et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o432-scheme1.jpg

Experimental

Crystal data

  • C9H12N2O2S
  • M r = 212.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o432-efi2.jpg
  • a = 5.275 (1) Å
  • b = 9.541 (1) Å
  • c = 10.229 (1) Å
  • β = 101.80 (5)°
  • V = 503.93 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 293 (2) K
  • 0.10 × 0.10 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 8285 measured reflections
  • 2210 independent reflections
  • 2106 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.087
  • S = 1.13
  • 2210 reflections
  • 127 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.30 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 979 Friedel pairs
  • Flack parameter: −0.01 (6)

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97 and CrystalBuilder (DECOMET Laboratory, 2007 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068158/dn2304sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068158/dn2304Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Pascal Retailleau from the Service de Cristallochimie of the Institut de Chimie des Substances Naturelles, CNRS, for help with data collection and processing. The authors acknowledge Professor Marc Lecouvey for his advice. This study was supported by the University Paris-Nord and the University of Annaba.

supplementary crystallographic information

Comment

The sulfamide unit is an ubiquitous structural entity in many naturally occurring compounds and medicinal agents (i.e. anticonvulsant, antihypertensive, hypoglycemic agents, histamine H2-receptor antagonist, herbicide, human cytomegalovirus inibitors···) (Soledade et al., 2006; Esteve & Bidal, 2002; Xiao & Timberlake, 2000; Martinez et al., 2000; Berredjem et al., 2000; Lee et al., 2002) We report herein the synthesis and the crystal structure determination of the title compound (Fig. 1).

The crystal structure consists of layers of hydrophobic regions that enclose the bicyclic moiety and polar regions where the sulfamide atoms are involved in hydrogen bond network. Namely, the sulfamide group is involved in four hydrogen bonds (2 with sulfamide O atoms, 2 with nitrogen atom) with four different symmetry-related molecules, building a two dimensional network parallel to the (0 0 1) plane (Table 1, Fig. 2).

Experimental

A solution of dimethyl malate (2,27 g, 14.1 mmol) in anhydrous CH2Cl2 (10 ml) was added to a stirring solution of chlorosulfonyl isocyanate (1.23 ml, 14.1 mmol) in CH2Cl2 (10 ml) at 0°C dropwise over period of 10 min. The resulting solution was transferred to a mixture of 1, 2, 3, 4 tetrahydroquinoleine (1,87 g, 14,1 mmol) in CH2Cl2 (20 ml) in the presence of triethylamine (1.1 equiv.). The solution was stirred at 0°C for less than 1.5 h. The reaction mixture was washed with HCl 0.1 N and water, and the organic layer was dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. Two compounds were obtained after purification by silica gel chromatography (Fig. 3). Slow evaporation at room temperature of a concentrated dichloromethane / methanol (9/1) solution of the most polar product (sulfamide I) afforded yellow crystals suitable for diffraction.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C). H atoms of amino group were located in difference Fourier maps and included in the subsequent refinement using restraints (N—H= 0.90 (1)Å and H···H= 1.66 (2) Å) with Uiso(H) = 1.2Ueq(N). In the last stage of refinement, they were treated as riding on their parent N atom.

Figures

Fig. 1.
Molecular View of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Partial packing view showing the formation of the two dimensional network. H bonds are represented as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, y + 1/2, -z + 1] ...
Fig. 3.
Chemical pathway of the formation of (I)

Crystal data

C9H12N2O2SF000 = 224
Mr = 212.27Dx = 1.399 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71070 Å
Hall symbol: P 2ybCell parameters from 6025 reflections
a = 5.275 (1) Åθ = 2.0–27.5º
b = 9.541 (1) ŵ = 0.30 mm1
c = 10.229 (1) ÅT = 293 (2) K
β = 101.80 (5)ºParallelepipedic, yellow
V = 503.93 (15) Å30.10 × 0.10 × 0.10 mm
Z = 2

Data collection

Nonius KappaCCD diffractometer2210 independent reflections
Radiation source: fine-focus sealed tube2106 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.032
Detector resolution: 9 pixels mm-1θmax = 27.5º
T = 293(2) Kθmin = 2.0º
[var phi] and ω scansh = −6→6
Absorption correction: nonek = −12→11
8285 measured reflectionsl = −13→13

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030  w = 1/[σ2(Fo2) + (0.0575P)2 + 0.0148P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.25 e Å3
2210 reflectionsΔρmin = −0.30 e Å3
127 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 979 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.01 (6)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.56649 (7)0.52966 (4)0.42439 (3)0.03710 (13)
N10.4887 (3)0.60389 (14)0.27757 (14)0.0369 (3)
C30.5408 (4)0.7557 (2)0.2719 (2)0.0475 (5)
H3A0.69930.77920.33450.057*
H3B0.39980.80870.29560.057*
O20.8298 (3)0.5665 (2)0.47635 (14)0.0624 (5)
C60.1947 (4)0.6250 (2)0.06005 (17)0.0415 (4)
C70.2282 (4)0.5698 (2)0.20079 (17)0.0451 (4)
H7A0.09850.61120.24390.054*
H7B0.20380.46900.19870.054*
C80.3113 (5)0.7727 (3)−0.1068 (2)0.0608 (6)
H80.41950.8406−0.13110.073*
C90.3522 (4)0.7280 (2)0.02630 (18)0.0442 (4)
C100.1146 (5)0.7182 (3)−0.2021 (2)0.0631 (6)
H100.08880.7499−0.28980.076*
C11−0.0028 (5)0.5703 (3)−0.0374 (2)0.0611 (6)
H11−0.10980.5009−0.01460.073*
C12−0.0432 (5)0.6172 (3)−0.1677 (2)0.0669 (7)
H12−0.17730.5802−0.23170.080*
C130.5667 (4)0.7918 (2)0.1305 (2)0.0538 (5)
H13A0.56360.89290.12000.065*
H13B0.73250.75820.11620.065*
O10.4929 (3)0.38595 (15)0.40334 (14)0.0580 (4)
N20.4032 (3)0.59065 (17)0.52808 (16)0.0426 (3)
H210.44780.67960.55400.051*
H220.23550.55960.51090.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0370 (2)0.0412 (2)0.03170 (18)0.00882 (17)0.00373 (13)0.00083 (17)
N10.0378 (8)0.0365 (8)0.0340 (6)0.0022 (6)0.0012 (5)0.0019 (6)
C30.0564 (12)0.0391 (10)0.0451 (10)−0.0060 (8)0.0055 (9)0.0004 (8)
O20.0313 (7)0.1054 (14)0.0475 (7)0.0094 (7)0.0011 (5)0.0075 (8)
C60.0424 (10)0.0444 (9)0.0356 (8)0.0066 (8)0.0029 (7)0.0031 (7)
C70.0430 (9)0.0500 (11)0.0385 (8)−0.0071 (8)−0.0008 (7)0.0080 (7)
C80.0667 (15)0.0737 (15)0.0458 (11)0.0099 (12)0.0204 (11)0.0167 (11)
C90.0457 (9)0.0485 (10)0.0399 (8)0.0096 (8)0.0122 (8)0.0069 (8)
C100.0767 (15)0.0790 (15)0.0340 (9)0.0256 (13)0.0121 (10)0.0077 (10)
C110.0631 (13)0.0690 (14)0.0434 (10)−0.0081 (11)−0.0069 (9)0.0031 (9)
C120.0745 (15)0.0789 (17)0.0395 (10)0.0129 (13)−0.0066 (10)−0.0040 (10)
C130.0525 (12)0.0564 (13)0.0514 (11)−0.0089 (10)0.0080 (9)0.0130 (10)
O10.0933 (12)0.0335 (7)0.0448 (7)0.0131 (7)0.0087 (7)0.0030 (6)
N20.0424 (8)0.0439 (8)0.0431 (8)−0.0024 (6)0.0122 (6)−0.0091 (7)

Geometric parameters (Å, °)

S1—O21.4261 (16)C8—C101.373 (4)
S1—O11.4293 (16)C8—C91.401 (3)
S1—N21.6060 (16)C8—H80.9300
S1—N11.6350 (14)C9—C131.515 (3)
N1—C71.473 (2)C10—C121.366 (4)
N1—C31.478 (2)C10—H100.9300
C3—C131.520 (3)C11—C121.380 (3)
C3—H3A0.9700C11—H110.9300
C3—H3B0.9700C12—H120.9300
C6—C91.376 (3)C13—H13A0.9700
C6—C111.388 (3)C13—H13B0.9700
C6—C71.509 (2)N2—H210.9059
C7—H7A0.9700N2—H220.9154
C7—H7B0.9700
O2—S1—O1120.43 (11)C10—C8—C9121.3 (2)
O2—S1—N2106.12 (10)C10—C8—H8119.4
O1—S1—N2106.34 (10)C9—C8—H8119.4
O2—S1—N1106.13 (10)C6—C9—C8118.7 (2)
O1—S1—N1105.53 (8)C6—C9—C13120.86 (17)
N2—S1—N1112.45 (9)C8—C9—C13120.4 (2)
C7—N1—C3110.85 (15)C12—C10—C8119.7 (2)
C7—N1—S1115.19 (12)C12—C10—H10120.1
C3—N1—S1116.54 (12)C8—C10—H10120.1
N1—C3—C13108.23 (16)C12—C11—C6121.1 (2)
N1—C3—H3A110.1C12—C11—H11119.5
C13—C3—H3A110.1C6—C11—H11119.5
N1—C3—H3B110.1C10—C12—C11119.7 (2)
C13—C3—H3B110.1C10—C12—H12120.1
H3A—C3—H3B108.4C11—C12—H12120.1
C9—C6—C11119.43 (18)C9—C13—C3112.27 (17)
C9—C6—C7122.01 (17)C9—C13—H13A109.1
C11—C6—C7118.57 (18)C3—C13—H13A109.1
N1—C7—C6110.24 (15)C9—C13—H13B109.1
N1—C7—H7A109.6C3—C13—H13B109.1
C6—C7—H7A109.6H13A—C13—H13B107.9
N1—C7—H7B109.6S1—N2—H21113.0
C6—C7—H7B109.6S1—N2—H22112.6
H7A—C7—H7B108.1H21—N2—H22122.9

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H21···O1i0.912.032.928 (2)173
N2—H22···O2ii0.922.102.971 (2)159

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2304).

References

  • Berredjem, M., Régainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem.165, 249–264.
  • DECOMET Laboratory (2007). CrystalBuilder DECOMET Laboratory, Louis Pasteur University, Strasbourg, France.
  • Esteve, C. & Bidal, B. (2002). Tetrahedron Lett.43, 1019–1021.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc.23, 167–169.
  • Martinez, A., Gil, C., Perez, C., Castro, A., Prieto, C., Otero, J., Andrei, G., Snoeck, R., Balzarini, J. & De Clercp, E. (2000). J. Med. Chem.43, 3267–3273. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Soledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem.14, 4958–4979. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Xiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem.37, 773–777.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography