PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m298.
Published online 2008 January 4. doi:  10.1107/S1600536807068183
PMCID: PMC2960227

Aqua­bis(o-vanillinato-κ2 O,O′)nickel(II)

Abstract

The NiII atom in the title complex, aqua­bis(2-formyl-6-meth­oxy­phenolato-κ2 O,O′)nickel(II), [Ni(C8H7O3)2(H2O)], is five-coordinated by four O atoms from two o-vanillinate ligands and one water mol­ecule in a slightly distorted square-pyramidal geometry (τ = 0.06). In the crystal structure, the mol­ecules are linked into dimers by inter­molecular O—H(...)O hydrogen bonds.

Related literature

For general background, see: Meyer et al. (1982 [triangle]); Soules et al. (1988 [triangle]); Edwards et al. (1992 [triangle]); Asokan et al. (1998 [triangle]). For calculation of the τ parameter, see: Addison et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m298-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H7O3)2(H2O)]
  • M r = 379.00
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m298-efi1.jpg
  • a = 9.4569 (14) Å
  • b = 15.8320 (19) Å
  • c = 11.1372 (18) Å
  • β = 97.729 (2)°
  • V = 1652.3 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.21 mm−1
  • T = 298 (2) K
  • 0.43 × 0.40 × 0.15 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.625, T max = 0.840
  • 8178 measured reflections
  • 2909 independent reflections
  • 1462 reflections with I > 2σ(I)
  • R int = 0.083

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.157
  • S = 1.00
  • 2909 reflections
  • 199 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.54 e Å−3
  • Δρmin = −1.08 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068183/bv2085sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068183/bv2085Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the financial support of the Shandong Province Science Foundation, and the State Key Laboratory of Crystalline Materials, Shandong University, People’s Republic of China.

supplementary crystallographic information

Comment

The structural and magnetic properties of binuclear and polymetallic nickel(II) complexes with various bridging ligands have received considerable attention in the past three decades (Meyer et al., 1982; Soules et al., 1988; Edwards et al., 1992; Asokan et al., 1998). In this paper, we report here the synthesis and crystal structure of the title complex, a new nickel complex.

The molecular structure of the title complex, (I), is shown in Fig.1. The NiII atom is five-coordinated in which four oxygen O(1), O(2), O(4), O(5) atoms from two o-vanillin ligands and one water molecule in a slightly distorted square pyramidal geometry, the tau value is 0.06 (Addison et al., 1984). NI(1), O(1), C(1), C(2), C(3), O(2) and Ni(1),O(4), C(9), C(10), C(11), O(5) form two six-membered chelating rings, which are essentially coplanar with a dihedral angle of 6.7 (0.19)°.

As seen in Fig. 2, the molecules are linked into dimers by intermolecular O—H···O hydrogen bonds (Table 1).

Experimental

Amounts of 304.3 mg (2 mmol) of o-vanillin and 80.00 mg (2 mmol) of NaOH were stirred into 30 ml absolute ethanol under room room temperature for 20 minutes, nickel chloride hexahydrate in the amount of 237.7 mg (1 mmol) was added, and the mixture was heated with stirring for 7 h and then filtered. The well shaped green polyhedral crystals of [Ni (C8H7O3)2H2O] for structure determination and characterization were separated from the mother liquor by slow evaporation at room temperature after two weeks.

Refinement

All H-atoms were positioned geometrically and refined using a riding model, with C—H (methyl) 0.96, C—H (aromatic) 0.93, C—H 0.93 Å (methylene), O—H 0.85 Å (water), withUiso(H) =1.2Ueq(C).

Figures

Fig. 1.
The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of the title compound, viewed approximately along the bc plane.

Crystal data

[Ni(C8H7O3)2(H2O)]F000 = 784
Mr = 379.00Dx = 1.524 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1614 reflections
a = 9.4569 (14) Åθ = 2.5–27.7º
b = 15.8320 (19) ŵ = 1.21 mm1
c = 11.1372 (18) ÅT = 298 (2) K
β = 97.729 (2)ºBlock, green
V = 1652.3 (4) Å30.43 × 0.40 × 0.15 mm
Z = 4

Data collection

Siemens SMART CCD area-detector diffractometer2909 independent reflections
Radiation source: fine-focus sealed tube1462 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.083
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.625, Tmax = 0.840k = −10→18
8178 measured reflectionsl = −13→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.157  w = 1/[σ2(Fo2) + (0.0683P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2909 reflectionsΔρmax = 0.54 e Å3
199 parametersΔρmin = −1.08 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.67982 (8)0.96568 (5)0.38774 (6)0.0453 (3)
O10.8808 (4)0.9428 (2)0.4415 (3)0.0453 (3)
O20.6193 (4)0.8834 (2)0.4980 (3)0.0513 (11)
O30.4899 (6)0.7887 (3)0.6400 (4)0.0692 (14)
O40.7481 (4)1.0350 (2)0.2593 (3)0.0453 (3)
O50.4873 (4)0.9690 (2)0.3093 (3)0.0496 (11)
O60.2167 (5)0.9542 (3)0.2415 (4)0.0608 (12)
O70.6836 (4)1.0859 (2)0.5067 (3)0.0453 (3)
H20.60501.10430.46990.068*
H30.66191.08210.57820.068*
C10.9283 (7)0.8990 (4)0.5329 (6)0.0616 (19)
H11.02700.89760.55280.074*
C20.8499 (7)0.8524 (4)0.6073 (6)0.0543 (18)
C30.7005 (7)0.8465 (4)0.5862 (6)0.0475 (16)
C40.6359 (9)0.7939 (4)0.6677 (6)0.0586 (19)
C50.7127 (11)0.7527 (5)0.7618 (7)0.082 (3)
H50.66640.71880.81260.098*
C60.8604 (11)0.7610 (5)0.7822 (8)0.090 (3)
H60.91230.73330.84740.108*
C70.9297 (9)0.8095 (5)0.7074 (7)0.075 (2)
H71.02850.81470.72140.090*
C80.4138 (9)0.7343 (4)0.7120 (7)0.093 (3)
H8A0.45310.67840.71230.139*
H8B0.31490.73270.67830.139*
H8C0.42250.75540.79350.139*
C90.6688 (7)1.0686 (4)0.1745 (5)0.0551 (17)
H90.71421.10250.12310.066*
C100.5204 (7)1.0624 (4)0.1462 (5)0.0465 (16)
C110.4375 (7)1.0112 (3)0.2125 (5)0.0419 (15)
C120.2881 (7)1.0062 (4)0.1720 (6)0.0490 (16)
C130.2275 (8)1.0497 (4)0.0718 (6)0.0614 (19)
H130.13021.04440.04620.074*
C140.3087 (9)1.1010 (4)0.0087 (6)0.071 (2)
H140.26591.1308−0.05850.086*
C150.4511 (9)1.1083 (4)0.0442 (6)0.064 (2)
H150.50471.14380.00140.077*
C160.0696 (7)0.9382 (5)0.2025 (7)0.088 (3)
H16A0.01910.99090.19180.132*
H16B0.03090.90500.26250.132*
H16C0.05940.90810.12710.132*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0487 (5)0.0459 (5)0.0406 (5)−0.0023 (4)0.0037 (3)0.0054 (4)
O10.0487 (5)0.0459 (5)0.0406 (5)−0.0023 (4)0.0037 (3)0.0054 (4)
O20.058 (3)0.050 (2)0.044 (3)0.012 (2)−0.001 (2)0.014 (2)
O30.092 (4)0.050 (3)0.069 (3)−0.006 (3)0.026 (3)0.013 (2)
O40.0487 (5)0.0459 (5)0.0406 (5)−0.0023 (4)0.0037 (3)0.0054 (4)
O50.055 (3)0.048 (2)0.045 (2)−0.005 (2)0.003 (2)0.012 (2)
O60.051 (3)0.074 (3)0.055 (3)−0.011 (3)0.001 (2)0.005 (2)
O70.0487 (5)0.0459 (5)0.0406 (5)−0.0023 (4)0.0037 (3)0.0054 (4)
C10.054 (5)0.065 (5)0.060 (5)0.010 (4)−0.013 (4)0.001 (4)
C20.062 (5)0.048 (4)0.052 (4)0.018 (4)0.002 (4)0.002 (3)
C30.063 (5)0.039 (4)0.041 (4)0.010 (3)0.010 (4)−0.007 (3)
C40.091 (6)0.040 (4)0.046 (4)0.008 (4)0.014 (4)0.001 (3)
C50.135 (8)0.061 (5)0.052 (5)0.020 (5)0.017 (5)0.013 (4)
C60.113 (8)0.075 (6)0.080 (6)0.036 (6)0.008 (6)0.004 (5)
C70.075 (6)0.083 (6)0.063 (5)0.023 (5)−0.008 (4)0.007 (5)
C80.137 (8)0.058 (5)0.094 (6)−0.015 (5)0.051 (6)0.007 (4)
C90.059 (5)0.057 (4)0.049 (4)−0.004 (4)0.007 (4)0.006 (3)
C100.059 (5)0.040 (3)0.039 (4)0.004 (3)0.001 (3)0.005 (3)
C110.056 (5)0.034 (3)0.034 (4)0.002 (3)0.000 (3)−0.003 (3)
C120.056 (5)0.045 (4)0.046 (4)0.000 (3)0.003 (4)−0.002 (3)
C130.068 (5)0.068 (5)0.045 (4)0.009 (4)−0.005 (4)0.009 (4)
C140.090 (6)0.063 (5)0.055 (5)0.007 (5)−0.015 (4)0.011 (4)
C150.092 (6)0.052 (4)0.047 (4)−0.008 (4)0.008 (4)0.004 (3)
C160.047 (5)0.122 (7)0.092 (6)−0.008 (5)0.001 (4)0.012 (5)

Geometric parameters (Å, °)

Ni1—O51.912 (4)C5—H50.9300
Ni1—O21.929 (4)C6—C71.364 (10)
Ni1—O11.949 (4)C6—H60.9300
Ni1—O41.978 (4)C7—H70.9300
Ni1—O72.316 (3)C8—H8A0.9600
O1—C11.263 (7)C8—H8B0.9600
O2—C31.301 (7)C8—H8C0.9600
O3—C41.377 (8)C9—C101.400 (8)
O3—C81.434 (7)C9—H90.9300
O4—C91.244 (6)C10—C111.405 (8)
O5—C111.302 (6)C10—C151.431 (8)
O6—C121.369 (7)C11—C121.426 (8)
O6—C161.423 (7)C12—C131.370 (8)
O7—H20.8502C13—C141.375 (9)
O7—H30.8502C13—H130.9300
C1—C21.395 (9)C14—C151.357 (9)
C1—H10.9300C14—H140.9300
C2—C31.404 (8)C15—H150.9300
C2—C71.431 (9)C16—H16A0.9600
C3—C41.428 (8)C16—H16B0.9600
C4—C51.359 (9)C16—H16C0.9600
C5—C61.391 (10)
O5—Ni1—O287.93 (16)C6—C7—C2119.8 (8)
O5—Ni1—O1167.31 (16)C6—C7—H7120.1
O2—Ni1—O192.25 (16)C2—C7—H7120.1
O5—Ni1—O492.17 (16)O3—C8—H8A109.5
O2—Ni1—O4171.17 (16)O3—C8—H8B109.5
O1—Ni1—O485.73 (16)H8A—C8—H8B109.5
O5—Ni1—O7100.30 (15)O3—C8—H8C109.5
O2—Ni1—O799.99 (14)H8A—C8—H8C109.5
O1—Ni1—O792.17 (14)H8B—C8—H8C109.5
O4—Ni1—O788.68 (14)O4—C9—C10128.7 (6)
C1—O1—Ni1125.2 (4)O4—C9—H9115.7
C3—O2—Ni1126.1 (4)C10—C9—H9115.7
C4—O3—C8118.3 (6)C9—C10—C11122.4 (6)
C9—O4—Ni1124.3 (4)C9—C10—C15118.8 (6)
C11—O5—Ni1127.5 (4)C11—C10—C15118.8 (6)
C12—O6—C16118.1 (5)O5—C11—C10124.5 (6)
Ni1—O7—H293.5O5—C11—C12117.7 (5)
Ni1—O7—H3119.4C10—C11—C12117.8 (6)
H2—O7—H399.8O6—C12—C13125.4 (6)
O1—C1—C2127.6 (6)O6—C12—C11113.5 (5)
O1—C1—H1116.2C13—C12—C11121.2 (6)
C2—C1—H1116.2C12—C13—C14120.8 (7)
C1—C2—C3122.6 (6)C12—C13—H13119.6
C1—C2—C7116.6 (7)C14—C13—H13119.6
C3—C2—C7120.8 (7)C15—C14—C13120.2 (7)
O2—C3—C2125.1 (6)C15—C14—H14119.9
O2—C3—C4118.8 (6)C13—C14—H14119.9
C2—C3—C4116.1 (6)C14—C15—C10121.2 (6)
C5—C4—O3124.0 (7)C14—C15—H15119.4
C5—C4—C3122.7 (8)C10—C15—H15119.4
O3—C4—C3113.2 (6)O6—C16—H16A109.5
C4—C5—C6120.0 (8)O6—C16—H16B109.5
C4—C5—H5120.0H16A—C16—H16B109.5
C6—C5—H5120.0O6—C16—H16C109.5
C7—C6—C5120.6 (8)H16A—C16—H16C109.5
C7—C6—H6119.7H16B—C16—H16C109.5
C5—C6—H6119.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H2···O2i0.852.212.899 (5)139
O7—H2···O3i0.852.212.929 (6)143
O7—H3···O5i0.852.172.907 (5)146
O7—H3···O6i0.852.252.906 (5)134

Symmetry codes: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2085).

References

  • Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Asokan, A., Varghese, B., Caneschi, A. & Manoharan, P. T. (1998). Inorg. Chem.37, 228–232.
  • Edwards, A. J., Hoskins, B. F., Kachab, E. H., Markiewicz, A., Murray, K. S. & Robson, R. (1992). Inorg. Chem.31, 3585–3591.
  • Meyer, A., Gleizes, A., Girerd, J. J., Verdaguer, M. & Kahn, O. (1982). Inorg. Chem.21, 1729–1739.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXTL Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Soules, R., Dahan, F., Laurent, J. P. & Castan, P. (1988). J. Chem. Soc. Dalton Trans. pp. 587–590.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography