PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m386.
Published online 2008 January 23. doi:  10.1107/S1600536808001621
PMCID: PMC2960225

Poly[μ2-benzene-1,3-dicarboxyl­ato-κ2 O:O′-μ2-1,3-di-4-pyridylpropane-κ2 N:N′-zinc(II)]

Abstract

The title compound, [Zn(C8H4O4)(C13H14N2)]n, was obtained by the hydro­thermal reaction of Zn(OAc)2·H2O with 1,3-di-4-pyridylpropane (bpp) and isophthalic acid (H2ip). The ZnII ion is coordinated by two bpp and two ip ligands in a distorted tetra­hedral environment. Each ligand coordinates in a bridging mode to connect ZnII ions into a three-dimensional diamondoid-type structure.

Related literature

For related literature, see: Dai et al. (2005 [triangle]); Evans et al. (1999 [triangle]); Tang et al. (2004 [triangle]); Fujita et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m386-scheme1.jpg

Experimental

Crystal data

  • [Zn(C8H4O4)(C13H14N2)]
  • M r = 427.76
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m386-efi2.jpg
  • a = 11.0418 (13) Å
  • b = 11.1924 (14) Å
  • c = 16.8687 (17) Å
  • β = 115.249 (7)°
  • V = 1885.5 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.33 mm−1
  • T = 293 (2) K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.733, T max = 0.875
  • 14111 measured reflections
  • 4328 independent reflections
  • 3887 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.115
  • S = 1.04
  • 4328 reflections
  • 254 parameters
  • H-atom parameters constrained
  • Δρmax = 0.73 e Å−3
  • Δρmin = −0.76 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808001621/lh2583sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001621/lh2583Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was financially supported by the Youth Talent Foundation of Fujian Province (2006F3010330083).

supplementary crystallographic information

Comment

A large family of coordination polymers has been developed recently owing to their potential applications as functional solid materials and their intriguing architectures or topologies (Evans et al., 1999; Fujita et al., 1994). It is now well understood that the hydrothermal crystallization of metal centers with multidentate N– or O-donor ligands, which possess more rich coordination sites and a wide variety of shapes to facilitate the formation of various networks, is one of the useful approaches to assembly desired new materials. An impressive literature of one-, two- and three-dimensional frameworks based on these ligands (Dai et al., 2005,Tang et al., 2004) with various structural motifs, such as helical, brick wall, ladder, honeycomb, square grid, parquet, and diamondoid, have been reported to date. Here we report the synthesis and crystal structure of the title compound (I).

In (I) [Fig. 1] each ZnII ion coordinates to two pyridine N atoms of two bpp ligands and two carboxylate groups of two ip ligands, in monodentate modes, giving a distorted tetrahedral coordination environment. Both bpp and ip ligands coordinate in bridging modes to for a three-dimensional diamondoid structure with Zn···Zn separations of 9.425 and 12.745Å and formimg cavities within the structure (Fig. 2).

Experimental

A mixture of Zn(Ac)2 H2O (1.00 mmol, 0.22 g), bpp (1.00 mmol, 0.19 g), H2ip (1.00 mmol, 0.16 g) and H2O (15 ml) was vigorous stirring until the pH was adjusted to 6 by adding 10% NaOH. This mixture was heated at 433 K for 3 days in a sealed 25 ml Teflon-lined stainless steel vessel under autogenous pressure. After cooling to room temperature at 50 K h-1, orange prism-shaped crystals were isolated, which were washed with ethanol and dried in air.

Refinement

H atoms were positioned geometrically and refined using a riding model [C—H 0.93–0.97Å and Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.
The asymmetric unit showing 30% probability displacement ellipsoids. A symmetry related O atom is shown to complete the tetrahedral coordination [symmetry code: (A) x, 5/2 - y, 1/2 + z]. H atoms are not shown.
Fig. 2.
Part of the crystal structure of the title compound.

Crystal data

[Zn(C8H4O4)(C13H14N2)]F000 = 880
Mr = 427.76Dx = 1.507 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4994 reflections
a = 11.0418 (13) Åθ = 3.2–27.5º
b = 11.1924 (14) ŵ = 1.33 mm1
c = 16.8687 (17) ÅT = 293 (2) K
β = 115.249 (7)ºPrism, orange
V = 1885.5 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer4328 independent reflections
Radiation source: fine-focus sealed tube3887 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.020
T = 293(2) Kθmax = 27.5º
ω scansθmin = 3.2º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.733, Tmax = 0.875k = −11→14
14111 measured reflectionsl = −21→21

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.115  w = 1/[σ2(Fo2) + (0.0695P)2 + 1.1112P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
4328 reflectionsΔρmax = 0.73 e Å3
254 parametersΔρmin = −0.76 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.21026 (3)1.06213 (2)0.850451 (16)0.03187 (11)
O10.1788 (2)0.88899 (17)0.71665 (12)0.0485 (5)
O20.2385 (2)1.07900 (15)0.74443 (11)0.0405 (4)
O30.2086 (3)1.3428 (2)0.50730 (17)0.0828 (9)
O40.22045 (18)1.27148 (16)0.38941 (11)0.0412 (4)
N10.0122 (2)1.02485 (18)0.81573 (13)0.0346 (4)
N20.3207 (2)0.92958 (18)0.93261 (13)0.0379 (5)
C10.1641 (2)1.0385 (2)0.43263 (15)0.0375 (5)
H1A0.15591.04900.37590.045*
C20.1551 (2)0.9102 (2)0.54416 (16)0.0354 (5)
H2A0.13870.83540.56160.042*
C3−0.0341 (3)0.9129 (2)0.81017 (17)0.0388 (5)
H3A0.02550.84980.82010.047*
C4−0.4016 (3)0.9562 (3)0.7578 (2)0.0491 (7)
H4A−0.40540.94420.81370.059*
H4B−0.45331.02720.73130.059*
C5−0.1657 (3)0.8869 (2)0.79050 (16)0.0410 (5)
H5A−0.19310.80780.78750.049*
C6−0.2578 (2)0.9791 (2)0.77504 (15)0.0370 (5)
C70.1420 (3)0.9271 (2)0.45968 (17)0.0407 (6)
H7A0.11820.86320.42070.049*
C80.2136 (2)1.1160 (2)0.57552 (14)0.0333 (5)
H8A0.23801.17980.61460.040*
C90.1985 (2)1.1341 (2)0.49008 (14)0.0332 (5)
C100.2109 (3)1.2590 (2)0.46194 (16)0.0403 (5)
C110.2035 (2)0.9872 (2)0.69431 (14)0.0322 (5)
C120.4479 (2)0.7383 (2)1.04535 (15)0.0353 (5)
C130.1929 (2)1.0050 (2)0.60318 (14)0.0302 (4)
C140.3843 (5)0.8270 (3)1.0680 (2)0.0765 (12)
H14A0.38290.82521.12270.092*
C150.3220 (5)0.9198 (3)1.0112 (2)0.0780 (13)
H15A0.27900.97821.02900.094*
C160.3822 (3)0.8432 (3)0.91049 (19)0.0596 (9)
H16A0.38290.84690.85560.072*
C170.4451 (3)0.7481 (3)0.96411 (18)0.0575 (8)
H17A0.48620.69000.94460.069*
C18−0.0769 (3)1.1138 (2)0.79964 (17)0.0413 (5)
H18A−0.04721.19210.80270.050*
C19−0.4686 (3)0.8497 (2)0.69901 (16)0.0424 (6)
H19A−0.41470.77900.72310.051*
H19B−0.55540.83650.69900.051*
C200.5127 (2)0.6335 (2)1.10512 (16)0.0393 (5)
H20A0.59960.61901.10550.047*
H20B0.45820.56301.08110.047*
C21−0.2100 (3)1.0941 (2)0.77886 (18)0.0429 (6)
H21A−0.26821.15860.76730.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.03897 (18)0.03055 (17)0.02643 (16)−0.00058 (10)0.01427 (12)0.00286 (9)
O10.0735 (13)0.0335 (9)0.0400 (9)−0.0039 (9)0.0257 (9)0.0072 (8)
O20.0602 (11)0.0360 (9)0.0325 (8)−0.0046 (8)0.0266 (8)−0.0023 (7)
O30.166 (3)0.0358 (11)0.0722 (15)−0.0180 (14)0.0749 (18)−0.0039 (11)
O40.0501 (10)0.0401 (9)0.0381 (9)0.0086 (8)0.0233 (8)0.0138 (7)
N10.0386 (10)0.0289 (9)0.0346 (9)−0.0028 (8)0.0139 (8)−0.0002 (8)
N20.0436 (11)0.0367 (11)0.0306 (10)0.0021 (8)0.0131 (9)0.0055 (8)
C10.0402 (12)0.0450 (13)0.0271 (10)0.0023 (10)0.0143 (9)0.0005 (10)
C20.0417 (12)0.0290 (11)0.0362 (11)−0.0001 (9)0.0173 (10)0.0000 (9)
C30.0459 (13)0.0282 (11)0.0433 (13)0.0008 (10)0.0198 (11)0.0017 (10)
C40.0458 (14)0.0557 (17)0.0506 (15)−0.0129 (12)0.0250 (13)−0.0232 (13)
C50.0525 (14)0.0300 (12)0.0417 (13)−0.0090 (10)0.0213 (11)−0.0047 (10)
C60.0410 (12)0.0406 (13)0.0301 (10)−0.0072 (10)0.0160 (9)−0.0095 (10)
C70.0514 (15)0.0356 (13)0.0346 (12)−0.0032 (10)0.0180 (11)−0.0090 (10)
C80.0411 (12)0.0304 (11)0.0301 (10)−0.0019 (9)0.0167 (9)−0.0020 (9)
C90.0369 (11)0.0338 (12)0.0306 (10)0.0009 (9)0.0160 (9)0.0043 (9)
C100.0510 (14)0.0363 (13)0.0370 (12)−0.0009 (10)0.0221 (11)0.0055 (10)
C110.0365 (11)0.0316 (11)0.0301 (10)0.0039 (9)0.0157 (9)0.0031 (9)
C120.0342 (11)0.0348 (12)0.0343 (11)0.0005 (9)0.0121 (9)0.0042 (9)
C130.0324 (10)0.0300 (11)0.0296 (10)0.0029 (8)0.0146 (8)0.0019 (8)
C140.145 (4)0.0503 (18)0.0402 (15)0.042 (2)0.046 (2)0.0145 (13)
C150.148 (4)0.0481 (17)0.0414 (16)0.046 (2)0.044 (2)0.0115 (13)
C160.0671 (19)0.078 (2)0.0407 (14)0.0318 (17)0.0300 (14)0.0196 (14)
C170.0651 (18)0.069 (2)0.0436 (14)0.0355 (16)0.0278 (14)0.0143 (14)
C180.0454 (13)0.0274 (12)0.0484 (14)−0.0035 (10)0.0175 (11)−0.0010 (10)
C190.0398 (13)0.0458 (14)0.0429 (13)−0.0119 (11)0.0190 (11)−0.0146 (11)
C200.0399 (13)0.0367 (13)0.0417 (12)0.0067 (10)0.0179 (10)0.0076 (10)
C210.0429 (14)0.0339 (12)0.0493 (14)0.0026 (11)0.0172 (12)−0.0044 (11)

Geometric parameters (Å, °)

Zn1—O21.9511 (17)C5—H5A0.9300
Zn1—O4i1.9621 (17)C6—C211.383 (4)
Zn1—N22.041 (2)C7—H7A0.9300
Zn1—N12.051 (2)C8—C91.393 (3)
O1—C111.230 (3)C8—C131.381 (3)
O2—C111.281 (3)C8—H8A0.9300
O3—C101.218 (3)C9—C101.501 (3)
O4—C101.279 (3)C11—C131.504 (3)
O4—Zn1ii1.9621 (17)C12—C141.361 (4)
N1—C181.343 (3)C12—C171.362 (3)
N1—C31.342 (3)C12—C201.513 (3)
N2—C161.323 (4)C14—C151.381 (4)
N2—C151.324 (4)C14—H14A0.9300
C1—C91.384 (3)C15—H15A0.9300
C1—C71.384 (4)C16—C171.377 (4)
C1—H1A0.9300C16—H16A0.9300
C2—C71.383 (3)C17—H17A0.9300
C2—C131.392 (3)C18—C211.376 (4)
C2—H2A0.9300C18—H18A0.9300
C3—C51.376 (4)C19—C20iii1.519 (3)
C3—H3A0.9300C19—H19A0.9700
C4—C191.524 (3)C19—H19B0.9700
C4—C61.509 (4)C20—C19iv1.519 (3)
C4—H4A0.9700C20—H20A0.9700
C4—H4B0.9700C20—H20B0.9700
C5—C61.393 (4)C21—H21A0.9300
O2—Zn1—O4i101.92 (7)C1—C9—C10122.2 (2)
O2—Zn1—N2114.19 (8)O3—C10—O4123.3 (2)
O4i—Zn1—N2122.01 (8)O3—C10—C9119.3 (2)
O2—Zn1—N1109.01 (8)O4—C10—C9117.4 (2)
O4i—Zn1—N1100.98 (8)O1—C11—O2123.9 (2)
N2—Zn1—N1107.55 (8)O1—C11—C13120.0 (2)
C11—O2—Zn1113.99 (14)O2—C11—C13116.04 (19)
C10—O4—Zn1ii114.07 (17)C14—C12—C17115.5 (2)
C18—N1—C3117.0 (2)C14—C12—C20122.2 (2)
C18—N1—Zn1120.43 (17)C17—C12—C20122.3 (2)
C3—N1—Zn1122.55 (17)C8—C13—C2119.1 (2)
C16—N2—C15115.7 (2)C8—C13—C11120.8 (2)
C16—N2—Zn1124.72 (18)C2—C13—C11120.0 (2)
C15—N2—Zn1119.2 (2)C12—C14—C15121.2 (3)
C9—C1—C7120.0 (2)C12—C14—H14A119.4
C9—C1—H1A120.0C15—C14—H14A119.4
C7—C1—H1A120.0N2—C15—C14123.1 (3)
C7—C2—C13120.1 (2)N2—C15—H15A118.4
C7—C2—H2A120.0C14—C15—H15A118.4
C13—C2—H2A120.0N2—C16—C17123.7 (2)
N1—C3—C5123.1 (2)N2—C16—H16A118.1
N1—C3—H3A118.5C17—C16—H16A118.1
C5—C3—H3A118.5C16—C17—C12120.8 (3)
C19—C4—C6115.9 (2)C16—C17—H17A119.6
C19—C4—H4A108.3C12—C17—H17A119.6
C6—C4—H4A108.3N1—C18—C21122.9 (2)
C19—C4—H4B108.3N1—C18—H18A118.5
C6—C4—H4B108.3C21—C18—H18A118.5
H4A—C4—H4B107.4C20iii—C19—C4113.2 (2)
C3—C5—C6120.0 (2)C20iii—C19—H19A108.9
C3—C5—H5A120.0C4—C19—H19A108.9
C6—C5—H5A120.0C20iii—C19—H19B108.9
C5—C6—C21116.6 (2)C4—C19—H19B108.9
C5—C6—C4122.3 (2)H19A—C19—H19B107.7
C21—C6—C4121.1 (2)C12—C20—C19iv114.5 (2)
C2—C7—C1120.5 (2)C12—C20—H20A108.6
C2—C7—H7A119.8C19iv—C20—H20A108.6
C1—C7—H7A119.8C12—C20—H20B108.6
C9—C8—C13121.1 (2)C19iv—C20—H20B108.6
C9—C8—H8A119.5H20A—C20—H20B107.6
C13—C8—H8A119.5C18—C21—C6120.4 (2)
C8—C9—C1119.2 (2)C18—C21—H21A119.8
C8—C9—C10118.4 (2)C6—C21—H21A119.8

Symmetry codes: (i) x, −y+5/2, z+1/2; (ii) x, −y+5/2, z−1/2; (iii) x−1, −y+3/2, z−1/2; (iv) x+1, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2583).

References

  • Dai, Y. M., Tang, E. Ma. E., Zhang, J., Li, Z. J. & Yao, Y. G. (2005). Cryst. Growth Des.5, 1313–1315.
  • Evans, O. R., Xiong, R., Wang, Z., Wong, G. K. & Lin, W. (1999). Angew. Chem. Int. Ed.38, 536–538.
  • Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc.116, 1151–1152.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Siemens (1997). SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Tang, E., Dai, Y.-M. & Lin, S. (2004). Acta Cryst. C60, m433–m434. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography