PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o465.
Published online 2008 January 18. doi:  10.1107/S1600536808001293
PMCID: PMC2960222

3-Bromo-N′-(2-hydroxy­benzyl­idene)benzohydrazide

Abstract

The title mol­ecule, C14H11BrN2O2, displays a trans configuration about the C=N and C—N bonds. The dihedral angle between the two benzene rings is 18.5 (3)°. An intra­molecular O—H(...)N hydrogen bond is observed. In the crystal structure, the mol­ecules are linked into a chain along the c axis by N—H(...)O and C—H(...)O hydrogen bonds.

Related literature

For related literature, see: Ali et al. (2002 [triangle]); Allen et al. (1987 [triangle]); Cukurovali et al. (2002 [triangle]); Li (2007a [triangle],b [triangle]); Qian et al. (2006 [triangle]); Qiu et al. (2006 [triangle]); Tarafder et al. (2002 [triangle]); Yang (2006 [triangle]); Yang & Guo (2006 [triangle]); Zhao (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o465-scheme1.jpg

Experimental

Crystal data

  • C14H11BrN2O2
  • M r = 319.16
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o465-efi1.jpg
  • a = 10.9397 (17) Å
  • b = 13.672 (2) Å
  • c = 8.8915 (14) Å
  • β = 95.882 (2)°
  • V = 1322.8 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.11 mm−1
  • T = 298 (2) K
  • 0.32 × 0.30 × 0.30 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.436, T max = 0.456 (expected range = 0.377–0.394)
  • 7853 measured reflections
  • 3029 independent reflections
  • 1997 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.106
  • S = 1.03
  • 3029 reflections
  • 176 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.73 e Å−3
  • Δρmin = −0.76 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808001293/ci2553sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001293/ci2553Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges a research grant from Xiangnan University.

supplementary crystallographic information

Comment

The compounds derived from the condensation reaction of aromatic carbaldehydes with hydrazides exhibit a wide range of biological activities and applications (Tarafder et al., 2002; Cukurovali et al., 2002; Ali et al., 2002). Herein the author reports the crystal structure of the title compound.

The bond lengths and bond angles in the title molecule (Fig. 1) are within normal ranges (Allen et al., 1987) and comprable with those observed in similar compounds(Qiu et al., 2006; Yang and Guo, 2006; Yang, 2006). The C7?N1 double bond length of 1.284 (3) Å is comparable with that in other Schiff bases (Li, 2007b; Qian et al., 2006; Zhao, 2006). The C8—N2 bond length of 1.348 (3) Å is intermediate between a C–N single bond and a C?N double bond, because of conjugation. The dihedral angle between the C1—C6 and C9—C14 benzene rings is 18.5 (3)°. The molecule adopts a trans configuration about the C7?N1 and C8–N2 bonds.

There is an intramolecular O1—H1···N1 hydrogen bond (Table 1) in the title molecule, as observed in a similar compound (Li, 2007a). In the crystal structure, the molecules are linked into a chain along the c axis by N—H···O and C—H···O hydrogen bonds (Table 2 and Fig.2).

Experimental

Salicylaldehyde (0.1 mmol, 12.2 mg) and 3-bromobenzoic acid hydrazide (0.1 mmol, 21.5 mg) were dissolved in methanol (10 ml). The mixture was stirred at room temperature for 10 min to give a clear yellow solution. Crystals of the title compound were formed by gradual evaporation of the solvent over 12 d at room temperature (yield 71.2%). Analysis found: C 52.45, H 3.53, N 8.86%; calculated for C14H11BrN2O2: C 52.69, H 3.47, N 8.78%.

Refinement

Atom H2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The remaining H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C—H = 0.93 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates an intramolecular hydrogen bond.
Fig. 2.
The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H11BrN2O2F000 = 640
Mr = 319.16Dx = 1.603 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2541 reflections
a = 10.9397 (17) Åθ = 2.3–25.8º
b = 13.672 (2) ŵ = 3.11 mm1
c = 8.8915 (14) ÅT = 298 (2) K
β = 95.882 (2)ºBlock, yellow
V = 1322.8 (4) Å30.32 × 0.30 × 0.30 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3029 independent reflections
Radiation source: fine-focus sealed tube1997 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.022
T = 298(2) Kθmax = 27.5º
ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −14→11
Tmin = 0.436, Tmax = 0.456k = −17→17
7853 measured reflectionsl = −11→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106  w = 1/[σ2(Fo2) + (0.044P)2 + 0.8938P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3029 reflectionsΔρmax = 0.73 e Å3
176 parametersΔρmin = −0.76 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.84586 (4)0.69664 (2)0.07515 (6)0.07832 (19)
O10.5849 (2)0.09555 (15)−0.3004 (2)0.0534 (5)
H10.63050.1342−0.25160.080*
O20.7840 (2)0.33361 (14)−0.1658 (2)0.0481 (5)
N10.7189 (2)0.16000 (16)−0.0568 (2)0.0389 (5)
N20.7749 (2)0.23255 (16)0.0345 (3)0.0405 (5)
C10.6433 (2)−0.00290 (19)−0.0791 (3)0.0368 (6)
C20.5861 (3)0.0088 (2)−0.2268 (3)0.0409 (6)
C30.5269 (3)−0.0700 (2)−0.3001 (4)0.0538 (8)
H30.4882−0.0620−0.39740.065*
C40.5246 (3)−0.1593 (2)−0.2315 (4)0.0587 (9)
H40.4853−0.2116−0.28310.070*
C50.5801 (3)−0.1726 (2)−0.0866 (4)0.0567 (9)
H50.5784−0.2336−0.04050.068*
C60.6378 (3)−0.0954 (2)−0.0110 (4)0.0491 (7)
H60.6740−0.10430.08730.059*
C70.7039 (3)0.07677 (19)0.0056 (3)0.0398 (6)
H70.73250.06760.10670.048*
C80.8024 (3)0.31817 (18)−0.0293 (3)0.0365 (6)
C90.8582 (2)0.39488 (19)0.0755 (3)0.0359 (6)
C100.8331 (3)0.4917 (2)0.0361 (3)0.0416 (7)
H100.78290.5067−0.05180.050*
C110.8834 (3)0.5656 (2)0.1290 (4)0.0474 (7)
C120.9601 (3)0.5450 (2)0.2575 (4)0.0552 (8)
H120.99430.59540.31840.066*
C130.9855 (3)0.4493 (2)0.2948 (3)0.0572 (9)
H131.03770.43490.38110.069*
C140.9343 (3)0.3738 (2)0.2055 (3)0.0468 (7)
H140.95090.30910.23290.056*
H20.778 (4)0.223 (3)0.1343 (14)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0724 (3)0.03681 (19)0.1239 (4)0.00291 (16)0.0012 (2)−0.01230 (19)
O10.0719 (16)0.0428 (11)0.0428 (12)−0.0081 (10)−0.0072 (10)0.0057 (9)
O20.0717 (14)0.0422 (10)0.0285 (11)−0.0023 (10)−0.0047 (9)−0.0005 (8)
N10.0472 (14)0.0350 (11)0.0338 (12)−0.0024 (10)0.0004 (10)−0.0045 (10)
N20.0559 (15)0.0350 (11)0.0292 (12)−0.0041 (11)−0.0022 (11)−0.0036 (10)
C10.0382 (15)0.0318 (13)0.0409 (15)0.0024 (11)0.0057 (12)−0.0011 (11)
C20.0441 (16)0.0392 (14)0.0397 (16)−0.0023 (12)0.0052 (12)−0.0023 (12)
C30.060 (2)0.0524 (18)0.0481 (18)−0.0130 (15)−0.0005 (15)−0.0042 (14)
C40.060 (2)0.0435 (16)0.073 (2)−0.0143 (15)0.0066 (18)−0.0148 (16)
C50.060 (2)0.0345 (15)0.076 (2)−0.0035 (14)0.0107 (18)0.0042 (15)
C60.0550 (18)0.0398 (15)0.0517 (18)0.0034 (13)0.0019 (14)0.0053 (13)
C70.0452 (16)0.0388 (14)0.0342 (15)0.0032 (12)−0.0013 (12)−0.0013 (11)
C80.0428 (16)0.0359 (14)0.0301 (15)0.0035 (11)0.0008 (11)−0.0004 (11)
C90.0397 (15)0.0373 (14)0.0304 (14)−0.0036 (11)0.0028 (11)−0.0023 (11)
C100.0437 (16)0.0390 (15)0.0410 (16)−0.0004 (12)−0.0012 (12)−0.0042 (12)
C110.0468 (17)0.0357 (14)0.061 (2)−0.0029 (12)0.0098 (15)−0.0069 (13)
C120.063 (2)0.0560 (19)0.0470 (19)−0.0200 (16)0.0056 (16)−0.0149 (15)
C130.066 (2)0.067 (2)0.0364 (17)−0.0203 (17)−0.0083 (15)0.0003 (15)
C140.0564 (19)0.0464 (16)0.0358 (16)−0.0079 (14)−0.0036 (14)0.0043 (12)

Geometric parameters (Å, °)

Br1—C111.889 (3)C5—C61.371 (4)
O1—C21.354 (3)C5—H50.93
O1—H10.82C6—H60.93
O2—C81.228 (3)C7—H70.93
N1—C71.284 (3)C8—C91.491 (4)
N1—N21.384 (3)C9—C141.384 (4)
N2—C81.348 (3)C9—C101.390 (4)
N2—H20.89 (1)C10—C111.383 (4)
C1—C21.404 (4)C10—H100.93
C1—C61.406 (4)C11—C121.376 (5)
C1—C71.446 (4)C12—C131.372 (5)
C2—C31.385 (4)C12—H120.93
C3—C41.367 (5)C13—C141.385 (4)
C3—H30.93C13—H130.93
C4—C51.379 (5)C14—H140.93
C4—H40.93
C2—O1—H1109.5N1—C7—H7119.5
C7—N1—N2116.7 (2)C1—C7—H7119.5
C8—N2—N1118.6 (2)O2—C8—N2123.0 (2)
C8—N2—H2124 (3)O2—C8—C9120.8 (2)
N1—N2—H2117 (3)N2—C8—C9116.3 (2)
C2—C1—C6118.1 (3)C14—C9—C10119.7 (3)
C2—C1—C7122.5 (2)C14—C9—C8123.2 (2)
C6—C1—C7119.4 (3)C10—C9—C8117.0 (2)
O1—C2—C3118.2 (3)C11—C10—C9119.2 (3)
O1—C2—C1122.2 (2)C11—C10—H10120.4
C3—C2—C1119.5 (3)C9—C10—H10120.4
C4—C3—C2121.0 (3)C12—C11—C10121.3 (3)
C4—C3—H3119.5C12—C11—Br1120.1 (2)
C2—C3—H3119.5C10—C11—Br1118.6 (2)
C3—C4—C5120.5 (3)C13—C12—C11119.1 (3)
C3—C4—H4119.7C13—C12—H12120.5
C5—C4—H4119.7C11—C12—H12120.5
C6—C5—C4119.5 (3)C12—C13—C14120.9 (3)
C6—C5—H5120.2C12—C13—H13119.6
C4—C5—H5120.2C14—C13—H13119.6
C5—C6—C1121.3 (3)C9—C14—C13119.8 (3)
C5—C6—H6119.3C9—C14—H14120.1
C1—C6—H6119.3C13—C14—H14120.1
N1—C7—C1121.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.932.639 (3)145
N2—H2···O2i0.89 (1)1.934 (15)2.806 (3)165 (4)
C7—H7···O2i0.932.453.206 (3)139

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2553).

References

  • Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem.92, 141–148. [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cukurovali, A., Yilmaz, I., Özmen, H. & Ahmedzade, M. (2002). Transition Met. Chem.27, 171–176.
  • Li, H.-B. (2007a). Acta Cryst. E63, o972–o973.
  • Li, H.-B. (2007b). Acta Cryst. E63, o4246.
  • Qian, H.-Y., Yin, Z.-G., Jia, J., Liu, S.-M. & Feng, L.-Q. (2006). Acta Cryst. E62, o3623–o3624.
  • Qiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2685–o2686.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547–2554.
  • Yang, D.-S. (2006). Acta Cryst. E62, o3792–o3793.
  • Yang, D.-S. & Guo, J.-B. (2006). Acta Cryst. E62, o4414–o4415.
  • Zhao, L.-F. (2006). Acta Cryst. E62, o3970–o3971.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography