PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m274.
Published online 2008 January 4. doi:  10.1107/S1600536807067827
PMCID: PMC2960221

catena-Poly[[tetra­aqua­cobalt(II)]-μ-2,2′-dihydroxy-5,5′-diazenediyldibenzoato]

Abstract

In the title compound, [Co(C14H8N2O6)(H2O)4]n, each 5,5′-diazenediylbis(2-hydroxy­benzoato) ligand acts as a dicarboxyl­ate bridge, leading to the formation of polymeric chains running in the [An external file that holds a picture, illustration, etc.
Object name is e-64-0m274-efi1.jpg10] direction. The Co atom is hexa­coordinated in a distorted octa­hedral geometry by six O atoms [Co—O = 2.039 (4)–2.115 (4) Å] from two ligands and four water mol­ecules. Inter­molecular O—H(...)O and O—H(...)N hydrogen bonds build up a three-dimensional supra­molecular structure.

Related literature

For related literature, see: Klotz (2005 [triangle]); Tang, Tan & Cao (2007 [triangle]); Tang, Tan, Chen et al. (2007 [triangle]); Tang, Yang et al. (2007 [triangle]); Riordan & Blair (1979 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m274-scheme1.jpg

Experimental

Crystal data

  • [Co(C14H8N2O6)(H2O)4]
  • M r = 431.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m274-efi2.jpg
  • a = 9.5152 (14) Å
  • b = 11.2452 (17) Å
  • c = 16.194 (2) Å
  • β = 106.687 (2)°
  • V = 1659.8 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.09 mm−1
  • T = 296 (2) K
  • 0.10 × 0.08 × 0.08 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.898, T max = 0.917
  • 11094 measured reflections
  • 3427 independent reflections
  • 1976 reflections with I > 2σ(I)
  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.133
  • S = 0.94
  • 3427 reflections
  • 246 parameters
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067827/dn2293sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067827/dn2293Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Gannan Medical University Masters Development Foundation.

supplementary crystallographic information

Comment

Olsalazine - 3,3-azobis(6-hydroxybenzoic acid) - has been widely used to prevent and treat the inflammatory bowel diseases, such as ulcerative colitis (Klotz, 2005). In previous work, we have synthesized a serial of Zn (Tang, Tan, Chen & Cao, 2007), Cd and Co (Tang, Yang et al., 2007) complexes with phenanthroline as auxiliary ligand. Also we have reported a Mn complex of olsalazine(Tang, Tan & Cao, 2007), however the cobalt complex with single olsalazine as building block have not been reported yet, Here we reported the crystal structure of the title compound, (I)- a new cobalt complex of olsalazine.

In (I), the Co atom is hexacoordinated (Fig. 1) by two O atoms from two L ligands (H2L=3,3-azo-bis(6-hydroxybenzoic acid)) cis to each other and four water molecules in a distorted octahedral geometry. Each ligand L acts as a carboxylate bridge, that leads to the formation of polymeric chain running in the [-110] direction. Intermolecular O—H···O and O—H···N hydrogen bonds build up a three dimensional supramolecular structure (Table 1).

Refinement

All H atoms attached to C atoms and O(hydroxyl) atom were fixed geometrically and treated as riding with C—H = 0.93 Å and O—H = 0.86 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H = 0.82 (1) Å and H···H = 1.34 (2) Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement, the H atoms were treated as riding on their parent O atoms.

The crystal used was twinned with two domains in the ratio 0.076/0.924. The twin law is [1.00 0.00 0.00 0.00 - 1.00 0.00 - 1.00 0.00 - 1.00].

Figures

Fig. 1.
Partial view of the polymeric chain in (I), showing the atom-labelling-scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x + 1, y - 1, z; (ii) x - 1, y + 1, z]

Crystal data

[Co(C14H8N2O6)(H2O)4]F000 = 884
Mr = 431.22Dx = 1.726 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 935 reflections
a = 9.5152 (14) Åθ = 2.2–26º
b = 11.2452 (17) ŵ = 1.10 mm1
c = 16.194 (2) ÅT = 296 (2) K
β = 106.687 (2)ºBlock, red
V = 1659.8 (4) Å30.10 × 0.08 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer3427 independent reflections
Radiation source: fine-focus sealed tube1976 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.062
T = 296(2) Kθmax = 26.4º
[var phi] and ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −11→11
Tmin = 0.898, Tmax = 0.918k = −14→14
11094 measured reflectionsl = −19→20

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049  w = 1/[σ2(Fo2) + (0.0717P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.133(Δ/σ)max = 0.001
S = 0.94Δρmax = 0.50 e Å3
3427 reflectionsΔρmin = −0.44 e Å3
246 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0050 (11)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.71433 (7)0.14001 (5)0.21254 (4)0.0333 (2)
O1W0.8824 (4)0.2527 (3)0.2134 (2)0.0515 (9)
H1WA0.92510.30020.25060.077*
H1WB0.87990.27800.16540.077*
O2W0.6621 (4)0.2503 (3)0.3053 (2)0.0537 (10)
H2WA0.59120.28420.27260.080*
H2WB0.63520.21270.34150.080*
O3W0.5405 (4)0.0277 (3)0.2068 (2)0.0575 (10)
H3WA0.5494−0.02630.24180.086*
H3WB0.51440.00280.15790.086*
O4W0.8418 (4)0.0398 (3)0.31539 (19)0.0455 (9)
H4WA0.89330.06630.36100.068*
H4WB0.8900−0.00060.29120.068*
N20.0915 (4)0.6415 (3)0.0012 (2)0.0366 (9)
N10.1224 (4)0.6059 (3)−0.0651 (2)0.0374 (10)
O10.5775 (4)0.2345 (3)0.10743 (19)0.0402 (8)
O20.4732 (4)0.3607 (3)0.1776 (2)0.0542 (10)
O30.5168 (4)0.2395 (3)−0.0547 (2)0.0609 (11)
H3A0.55870.2174−0.00550.091*
O4−0.3150 (4)1.0087 (3)−0.0450 (2)0.0533 (10)
H4A−0.31261.03950.00120.080*
O5−0.2290 (4)1.0400 (3)0.1171 (2)0.0455 (9)
O6−0.0537 (4)0.9267 (3)0.2009 (2)0.0637 (12)
C10.4906 (5)0.3199 (4)0.1097 (3)0.0358 (11)
C20.4027 (5)0.3698 (4)0.0249 (3)0.0326 (10)
C30.4191 (6)0.3262 (4)−0.0520 (3)0.0399 (12)
C40.3349 (6)0.3724 (4)−0.1303 (3)0.0523 (15)
H40.34270.3408−0.18190.063*
C50.2420 (5)0.4632 (4)−0.1309 (3)0.0441 (13)
H50.18850.4954−0.18350.053*
C60.2240 (5)0.5101 (4)−0.0547 (3)0.0346 (11)
C70.3054 (5)0.4617 (4)0.0228 (3)0.0356 (11)
H70.29440.49140.07420.043*
C8−0.0120 (5)0.7371 (4)−0.0142 (3)0.0348 (11)
C9−0.1058 (5)0.7662 (4)−0.0956 (3)0.0414 (12)
H9−0.10240.7229−0.14390.050*
C10−0.2027 (6)0.8587 (4)−0.1037 (3)0.0446 (12)
H10−0.26210.8798−0.15800.054*
C11−0.2134 (5)0.9212 (4)−0.0320 (3)0.0386 (12)
C12−0.1231 (5)0.8923 (4)0.0500 (3)0.0351 (11)
C13−0.0236 (6)0.8005 (4)0.0566 (3)0.0419 (12)
H130.03770.78080.11080.050*
C14−0.1338 (5)0.9566 (4)0.1286 (3)0.0403 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0379 (4)0.0295 (3)0.0312 (3)0.0035 (3)0.0078 (3)0.0014 (3)
O1W0.060 (2)0.055 (2)0.0364 (19)−0.0171 (19)0.0088 (17)−0.0010 (17)
O2W0.061 (3)0.060 (2)0.040 (2)0.023 (2)0.0160 (18)0.0057 (17)
O3W0.054 (2)0.061 (2)0.047 (2)−0.015 (2)−0.0007 (17)0.0173 (19)
O4W0.054 (2)0.044 (2)0.0359 (18)0.0113 (17)0.0085 (16)−0.0011 (15)
N20.042 (2)0.0304 (19)0.035 (2)0.0096 (19)0.0072 (18)0.0031 (19)
N10.039 (3)0.036 (2)0.038 (2)0.0101 (18)0.0122 (18)0.0017 (17)
O10.048 (2)0.0362 (18)0.0361 (18)0.0122 (16)0.0121 (16)0.0027 (15)
O20.070 (3)0.055 (2)0.0340 (18)0.028 (2)0.0094 (18)−0.0057 (17)
O30.080 (3)0.062 (2)0.042 (2)0.045 (2)0.019 (2)0.0083 (18)
O40.061 (2)0.052 (2)0.0403 (19)0.0296 (19)0.0029 (17)−0.0053 (17)
O50.054 (2)0.0407 (19)0.0385 (19)0.0189 (18)0.0075 (16)−0.0045 (16)
O60.079 (3)0.067 (3)0.035 (2)0.043 (2)0.0014 (19)−0.0079 (19)
C10.039 (3)0.030 (2)0.037 (3)0.004 (2)0.008 (2)0.004 (2)
C20.036 (3)0.031 (2)0.030 (2)0.002 (2)0.009 (2)0.003 (2)
C30.043 (3)0.035 (3)0.045 (3)0.014 (2)0.018 (2)0.000 (2)
C40.071 (4)0.052 (3)0.033 (3)0.025 (3)0.014 (3)0.003 (3)
C50.050 (3)0.045 (3)0.035 (3)0.017 (3)0.008 (2)0.006 (2)
C60.041 (3)0.028 (2)0.035 (3)0.007 (2)0.012 (2)0.001 (2)
C70.043 (3)0.031 (2)0.037 (3)0.003 (2)0.017 (2)0.004 (2)
C80.036 (3)0.030 (2)0.039 (3)0.010 (2)0.012 (2)0.001 (2)
C90.045 (3)0.047 (3)0.031 (3)0.010 (2)0.009 (2)−0.005 (2)
C100.055 (3)0.048 (3)0.026 (2)0.015 (3)0.004 (2)0.004 (2)
C110.041 (3)0.033 (2)0.039 (3)0.006 (2)0.006 (2)0.001 (2)
C120.037 (3)0.032 (3)0.033 (2)0.005 (2)0.004 (2)−0.0027 (19)
C130.050 (3)0.037 (3)0.034 (3)0.014 (2)0.003 (2)−0.002 (2)
C140.038 (3)0.039 (3)0.038 (3)0.012 (2)0.003 (2)−0.002 (2)

Geometric parameters (Å, °)

Co1—O1W2.037 (3)O5—C141.280 (5)
Co1—O3W2.062 (3)O5—Co1ii2.103 (3)
Co1—O4W2.087 (3)O6—C141.245 (5)
Co1—O5i2.103 (3)C1—C21.497 (6)
Co1—O12.110 (3)C2—C71.381 (6)
Co1—O2W2.115 (3)C2—C31.388 (6)
O1W—H1WA0.8195C3—C41.391 (7)
O1W—H1WB0.8219C4—C51.349 (6)
O2W—H2WA0.8220C4—H40.9300
O2W—H2WB0.8212C5—C61.397 (6)
O3W—H3WA0.8183C5—H50.9300
O3W—H3WB0.8089C6—C71.383 (6)
O4W—H4WA0.8158C7—H70.9300
O4W—H4WB0.8205C8—C131.383 (6)
N2—N11.257 (5)C8—C91.401 (6)
N2—C81.430 (6)C9—C101.371 (6)
N1—C61.426 (6)C9—H90.9300
O1—C11.275 (5)C10—C111.385 (6)
O2—C11.245 (5)C10—H100.9300
O3—C31.357 (5)C11—C121.398 (6)
O3—H3A0.8200C12—C131.383 (6)
O4—C111.353 (5)C12—C141.493 (6)
O4—H4A0.8200C13—H130.9300
O1W—Co1—O3W177.81 (14)C3—C2—C1120.9 (4)
O1W—Co1—O4W93.15 (13)O3—C3—C2122.5 (4)
O3W—Co1—O4W88.88 (13)O3—C3—C4117.4 (4)
O1W—Co1—O5i88.37 (14)C2—C3—C4120.2 (4)
O3W—Co1—O5i90.63 (15)C5—C4—C3119.6 (4)
O4W—Co1—O5i94.86 (12)C5—C4—H4120.2
O1W—Co1—O189.64 (14)C3—C4—H4120.2
O3W—Co1—O188.33 (13)C4—C5—C6121.7 (4)
O4W—Co1—O1177.14 (13)C4—C5—H5119.2
O5i—Co1—O184.59 (12)C6—C5—H5119.2
O1W—Co1—O2W88.52 (15)C7—C6—C5118.3 (4)
O3W—Co1—O2W92.42 (15)C7—C6—N1126.0 (4)
O4W—Co1—O2W87.20 (13)C5—C6—N1115.6 (4)
O5i—Co1—O2W176.36 (14)C2—C7—C6120.9 (4)
O1—Co1—O2W93.49 (13)C2—C7—H7119.6
Co1—O1W—H1WA129.4C6—C7—H7119.6
Co1—O1W—H1WB113.6C13—C8—C9118.6 (4)
H1WA—O1W—H1WB110.0C13—C8—N2117.2 (4)
Co1—O2W—H2WA97.5C9—C8—N2124.1 (4)
Co1—O2W—H2WB112.9C10—C9—C8119.8 (4)
H2WA—O2W—H2WB109.5C10—C9—H9120.1
Co1—O3W—H3WA120.1C8—C9—H9120.1
Co1—O3W—H3WB105.9C9—C10—C11120.9 (4)
H3WA—O3W—H3WB111.2C9—C10—H10119.5
Co1—O4W—H4WA125.8C11—C10—H10119.5
Co1—O4W—H4WB101.2O4—C11—C10117.4 (4)
H4WA—O4W—H4WB111.2O4—C11—C12122.3 (4)
N1—N2—C8114.1 (3)C10—C11—C12120.3 (4)
N2—N1—C6117.2 (4)C13—C12—C11117.9 (4)
C1—O1—Co1127.7 (3)C13—C12—C14120.5 (4)
C3—O3—H3A109.5C11—C12—C14121.6 (4)
C11—O4—H4A109.5C8—C13—C12122.5 (4)
C14—O5—Co1ii127.3 (3)C8—C13—H13118.8
O2—C1—O1123.7 (4)C12—C13—H13118.8
O2—C1—C2119.4 (4)O6—C14—O5123.4 (4)
O1—C1—C2116.9 (4)O6—C14—C12119.9 (4)
C7—C2—C3119.3 (4)O5—C14—C12116.7 (4)
C7—C2—C1119.8 (4)

Symmetry codes: (i) x+1, y−1, z; (ii) x−1, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O6iii0.821.892.667 (5)157
O1W—H1WB···N1iv0.822.082.871 (5)161
O2W—H2WA···O20.821.842.629 (5)161
O3W—H3WA···O2iii0.821.882.682 (4)167
O3W—H3WB···O4v0.812.232.899 (5)141
O4W—H4WA···N2iii0.822.353.074 (5)148
O4W—H4WB···O6i0.821.882.665 (4)159
O3—H3A···O10.821.802.521 (5)147
O4—H4A···O50.821.822.541 (4)147

Symmetry codes: (iii) −x+1, y−1/2, −z+1/2; (iv) −x+1, −y+1, −z; (v) −x, −y+1, −z; (i) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2293).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Klotz, U. (2005). Dig. Liver Dis.37, 381–388. [PubMed]
  • Riordan, J. E. & Blair, H. S. (1979). Polymer, 20, 196–202.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Tang, Y.-Z., Tan, Y.-H. & Cao, Y.-W. (2007). Acta Cryst. E63, m1175–m1176.
  • Tang, Y. Z., Tan, Y. H., Chen, S. H. & Cao, Y. W. (2007). Z. Anorg. Allg. Chem.633, 332–335.
  • Tang, Y. Z., Yang, S. P., Tan, Y. H., Chen, S. H., Cao, Y. W. & Wang, P. (2007). Chin. J. Inorg. Chem.23, 70–74.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography