PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o425.
Published online 2008 January 11. doi:  10.1107/S1600536808000482
PMCID: PMC2960215

3-Ethyl-9-phenyl-2-tosyl-2,3,3a,4,9,9a-hexahydro-1H-pyrrolo[3,4-b]quinoline

Abstract

In the mol­ecule of the title compound, C26H28N2O2S, the pyrrolidine ring adopts an envelope conformation and the tetra­hydro­pyridine ring is in a half-chair conformation; these two rings are trans-fused. The dihedral angle between the pyridine- and sulfonyl-bound benzene rings is 36.15 (5)°. In the crystalline state, the mol­ecules are linked into a two-dimensional network parallel to the ab plane by C—H(...)O and C—H(...)π inter­actions.

Related literature

For the orientations of phenyl and ethyl substituents with respect to the fused ring system in the related 7-chloro- and 7-bromo-derivatives, see: Sudha et al. (2007 [triangle], 2008 [triangle]). For biological activities of pyrrolo[3,4-b]quinoline derivatives, see: Anzini et al. (1990 [triangle], 1992 [triangle]); Crenshaw et al. (1976 [triangle]); Fujita et al. (1996 [triangle]); Xiao et al. (2006 [triangle]). For related literature, see: Duax et al. (1976 [triangle]); Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o425-scheme1.jpg

Experimental

Crystal data

  • C26H28N2O2S
  • M r = 432.56
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o425-efi1.jpg
  • a = 9.3990 (1) Å
  • b = 10.9077 (2) Å
  • c = 12.5654 (3) Å
  • α = 64.3190 (8)°
  • β = 72.5291 (8)°
  • γ = 76.3803 (8)°
  • V = 1099.07 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.17 mm−1
  • T = 100.0 (1) K
  • 0.48 × 0.37 × 0.17 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.878, T max = 0.971
  • 49024 measured reflections
  • 11697 independent reflections
  • 9445 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.122
  • S = 1.03
  • 11697 reflections
  • 285 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Version 5.1; Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000482/rz2188sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000482/rz2188Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF thanks Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS), grant No. 203/PFIZIK/671064.

supplementary crystallographic information

Comment

Pyrrolo[3,4-b]quinoline derivatives exhibit cytotoxic (Xiao et al., 2006) and antibacterial (Fujita et al., 1996) activities. The derivatives are also found to have interferon inducing activities (Crenshaw et al., 1976) and ability to bind benzodiazepine receptors (Anzini et al., 1990, 1992). We report here the crystal structure of the title compound, a pyrrolo[3,4-b]quinoline derivative (Fig. 1).

Bond lengths and angles are comparable with those in the 7-chloro- and 7-bromo- derivatives (Sudha et al., 2007a,b). The pyrrolidine ring adopts an envelope conformation, with the local mirror plane passing through C2 and the midpoint of the bond N1—C11. The relevant asymmetry parameters (Duax et al., 1976) are ΔCs[C2] = 1.90 (7)° and the puckering parameters q2 and [var phi]2 (Cremer & Pople, 1975) are 0.444 (1) Å and 74.6 (1)°. The tetrahydropyridine ring adopts a half-chair conformation, with the local twofold rotation axis passing through the midpoints of bonds C4—C9 and C2—C10. The asymmetry parameter ΔC2[C4—c9] is 5.0 (1)°, and the puckering parameters Q, θ and [var phi] are 0.505 (1) Å, 133.2 (1)° and 81.6 (1)°.

The tosyl group is attached to the pyrrolidine ring in a biaxial position. The sum of the bond angles around atoms N1 (342.6°) and N2 (347.2°) indicates sp3 hybridization. The pyrrolidine and tetrahydropyridine rings show trans-fusion. The C19–C24 phenyl ring is equatorially attached to the tetrahydropyridine ring, and it forms dihedral angles of 74.80 (5) and 36.15 (5)°, respectively, with the C4–C9 and C12–C17 benzene rings.

An intramolecular C—H···π interaction involving the sulfonyl-bound phenyl ring (C12–C17, centroid Cg1) is observed. In the solid state, the molecules exist as centrosymmetrically C—H···π hydrogen-bonded dimers involving the C10—H10 group of the molecule at (x, y, z) and the C4–C9 benzene ring (centroid Cg2) of the molecule at (2 - x, -y, 1 - z). The dimers are linked into a chain along the a axis through C8—H8···O1i hydrogen bonds, and C7—H7···π interaction involving the C19–C24 phenyl ring (centroid Cg3) of the molecule at (1 + x, y, z). The chains are cross-linked via C23—H23···O2ii hydrogen bonds (Table 1), forming a two-dimensional network parallel to the ab plane (Fig. 2).

Experimental

InCl3 (20 mol%) was added to a mixture of 2-(N-cinnamyl-N-tosylamino)butanal (1 mmol) and arylamine (1 mmol) in acetonitrile (20 ml). The reaction mixture was stirred at room temperature for 30 min. On completion of the reaction, as indicated by TLC, the mixture was quenched with water and extracted with ethyl acetate. The organic layer was washed with brine and dried over Na2SO4. The solvent was evaporated in vacuo and the crude product was chromatographed using a hexane–ethyl acetate (8.5:1.5 v/v) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

Refinement

The N-bound H atom was located from a difference map and refined freely. The remaining H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). A rotating group model was used for the methyl groups attached to aromatic rings.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering. Displacement ellipsoids are drawn at the 80% probability level.
Fig. 2.
Part of the two-dimensional network in the title compound. Dashed and dotted lines indicate C—H···O and C—H···π interactions, respectively. For the sake of clarity, H atoms not involved ...

Crystal data

C26H28N2O2SZ = 2
Mr = 432.56F000 = 460
Triclinic, P1Dx = 1.307 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.3990 (1) ÅCell parameters from 7071 reflections
b = 10.9077 (2) Åθ = 2.2–37.7º
c = 12.5654 (3) ŵ = 0.17 mm1
α = 64.3190 (8)ºT = 100.0 (1) K
β = 72.5291 (8)ºBlock, colourless
γ = 76.3803 (8)º0.48 × 0.37 × 0.17 mm
V = 1099.07 (4) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer11697 independent reflections
Radiation source: fine-focus sealed tube9445 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.038
Detector resolution: 8.33 pixels mm-1θmax = 37.8º
T = 100.0(1) Kθmin = 1.9º
ω scansh = −15→16
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −18→18
Tmin = 0.878, Tmax = 0.971l = −21→21
49024 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122  w = 1/[σ2(Fo2) + (0.0632P)2 + 0.2032P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
11697 reflectionsΔρmax = 0.54 e Å3
285 parametersΔρmin = −0.47 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.49683 (2)0.424122 (19)0.278537 (17)0.01327 (5)
O10.35740 (7)0.37308 (7)0.30453 (6)0.01740 (11)
O20.49608 (8)0.55466 (6)0.28077 (6)0.01737 (11)
N10.59007 (8)0.30981 (7)0.37860 (6)0.01346 (11)
N20.99769 (8)0.23374 (7)0.33005 (7)0.01746 (13)
H1N21.0420 (18)0.2777 (15)0.3524 (14)0.034 (4)*
C10.61499 (9)0.16668 (8)0.38536 (7)0.01513 (13)
H1A0.55720.15710.33770.018*
H1B0.58870.10160.46850.018*
C20.78261 (9)0.14729 (7)0.33219 (7)0.01321 (12)
H20.80070.20380.24510.016*
C30.86315 (9)0.00361 (8)0.34922 (7)0.01390 (12)
H30.8397−0.05480.43590.017*
C41.03201 (9)0.01342 (8)0.30922 (7)0.01426 (12)
C51.13274 (10)−0.08705 (8)0.27522 (8)0.01671 (13)
H51.0951−0.15890.27570.020*
C61.28696 (10)−0.08326 (9)0.24074 (8)0.01913 (15)
H61.3514−0.15110.21790.023*
C71.34377 (11)0.02374 (9)0.24084 (9)0.02159 (16)
H71.44690.02690.21930.026*
C81.24635 (10)0.12555 (9)0.27314 (9)0.02058 (15)
H81.28510.19660.27300.025*
C91.09059 (9)0.12303 (8)0.30597 (7)0.01567 (13)
C100.84289 (9)0.21313 (8)0.39204 (7)0.01400 (12)
H100.83700.15350.47780.017*
C110.73416 (9)0.34598 (8)0.38053 (7)0.01333 (12)
H110.77040.41970.30310.016*
C120.60265 (9)0.42650 (8)0.13594 (7)0.01398 (12)
C130.71831 (10)0.50922 (8)0.07365 (7)0.01698 (14)
H130.73060.57140.10160.020*
C140.81489 (11)0.49778 (9)−0.03058 (8)0.01997 (15)
H140.89160.5533−0.07270.024*
C150.79834 (11)0.40407 (9)−0.07292 (7)0.01950 (15)
C160.67845 (11)0.32643 (9)−0.01229 (7)0.01902 (15)
H160.66390.2667−0.04200.023*
C170.58026 (10)0.33691 (8)0.09193 (7)0.01663 (13)
H170.50060.28470.13180.020*
C180.90773 (13)0.38731 (12)−0.18222 (9)0.0290 (2)
H18A0.95240.2936−0.16080.044*
H18B0.98490.4455−0.21040.044*
H18C0.85580.4122−0.24520.044*
C190.81012 (9)−0.05736 (8)0.28198 (7)0.01477 (13)
C200.83943 (11)−0.00052 (9)0.15531 (8)0.01856 (14)
H200.89490.07340.11200.022*
C210.78685 (12)−0.05303 (10)0.09319 (9)0.02300 (17)
H210.8071−0.01420.00890.028*
C220.70390 (12)−0.16372 (10)0.15726 (11)0.02572 (19)
H220.6683−0.19870.11590.031*
C230.67453 (11)−0.22161 (9)0.28268 (11)0.02484 (18)
H230.6191−0.29560.32560.030*
C240.72808 (10)−0.16905 (8)0.34479 (9)0.01953 (15)
H240.7088−0.20900.42900.023*
C250.70648 (10)0.39338 (8)0.48343 (7)0.01598 (13)
H25A0.62920.47160.47190.019*
H25B0.66900.32040.55940.019*
C260.84606 (11)0.43310 (10)0.49243 (8)0.01998 (15)
H26A0.82110.46190.55870.030*
H26B0.88260.50690.41830.030*
H26C0.92240.35560.50590.030*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01224 (8)0.01495 (8)0.01383 (8)−0.00040 (6)−0.00266 (6)−0.00755 (6)
O10.0120 (3)0.0218 (3)0.0199 (3)−0.0020 (2)−0.0028 (2)−0.0102 (2)
O20.0197 (3)0.0158 (2)0.0195 (3)0.0003 (2)−0.0050 (2)−0.0105 (2)
N10.0123 (3)0.0147 (2)0.0142 (2)−0.0013 (2)−0.0032 (2)−0.0064 (2)
N20.0121 (3)0.0180 (3)0.0266 (3)−0.0015 (2)−0.0028 (3)−0.0138 (3)
C10.0138 (3)0.0146 (3)0.0168 (3)−0.0023 (2)−0.0026 (3)−0.0063 (2)
C20.0128 (3)0.0135 (3)0.0138 (3)−0.0018 (2)−0.0026 (2)−0.0060 (2)
C30.0142 (3)0.0133 (3)0.0140 (3)−0.0022 (2)−0.0030 (2)−0.0050 (2)
C40.0141 (3)0.0138 (3)0.0154 (3)−0.0009 (2)−0.0041 (2)−0.0061 (2)
C50.0172 (3)0.0152 (3)0.0190 (3)0.0005 (3)−0.0054 (3)−0.0083 (2)
C60.0166 (4)0.0190 (3)0.0225 (4)0.0021 (3)−0.0046 (3)−0.0108 (3)
C70.0139 (4)0.0220 (3)0.0297 (4)0.0003 (3)−0.0032 (3)−0.0133 (3)
C80.0131 (3)0.0207 (3)0.0304 (4)−0.0021 (3)−0.0032 (3)−0.0133 (3)
C90.0136 (3)0.0157 (3)0.0193 (3)−0.0006 (2)−0.0036 (3)−0.0089 (2)
C100.0132 (3)0.0153 (3)0.0147 (3)−0.0010 (2)−0.0032 (2)−0.0073 (2)
C110.0124 (3)0.0155 (3)0.0132 (3)−0.0018 (2)−0.0021 (2)−0.0071 (2)
C120.0147 (3)0.0147 (3)0.0128 (3)0.0001 (2)−0.0035 (2)−0.0064 (2)
C130.0179 (4)0.0175 (3)0.0155 (3)−0.0033 (3)−0.0027 (3)−0.0066 (2)
C140.0184 (4)0.0224 (3)0.0160 (3)−0.0037 (3)−0.0012 (3)−0.0058 (3)
C150.0201 (4)0.0206 (3)0.0146 (3)0.0033 (3)−0.0035 (3)−0.0073 (3)
C160.0248 (4)0.0182 (3)0.0152 (3)0.0000 (3)−0.0048 (3)−0.0087 (3)
C170.0190 (4)0.0172 (3)0.0154 (3)−0.0020 (3)−0.0046 (3)−0.0077 (2)
C180.0290 (5)0.0336 (5)0.0188 (4)0.0037 (4)0.0008 (4)−0.0130 (3)
C190.0138 (3)0.0130 (3)0.0187 (3)−0.0014 (2)−0.0038 (3)−0.0073 (2)
C200.0202 (4)0.0185 (3)0.0195 (3)−0.0021 (3)−0.0059 (3)−0.0090 (3)
C210.0232 (4)0.0267 (4)0.0266 (4)0.0031 (3)−0.0108 (3)−0.0169 (3)
C220.0211 (4)0.0255 (4)0.0431 (5)0.0049 (3)−0.0149 (4)−0.0237 (4)
C230.0187 (4)0.0187 (3)0.0428 (5)−0.0015 (3)−0.0103 (4)−0.0153 (4)
C240.0167 (4)0.0151 (3)0.0266 (4)−0.0026 (3)−0.0046 (3)−0.0078 (3)
C250.0151 (3)0.0199 (3)0.0153 (3)−0.0019 (3)−0.0019 (3)−0.0101 (3)
C260.0190 (4)0.0267 (4)0.0198 (3)−0.0047 (3)−0.0036 (3)−0.0136 (3)

Geometric parameters (Å, °)

S1—O21.4346 (6)C12—C171.3930 (11)
S1—O11.4363 (7)C12—C131.3955 (12)
S1—N11.6406 (7)C13—C141.3890 (12)
S1—C121.7613 (8)C13—H130.93
N1—C11.4913 (10)C14—C151.3957 (13)
N1—C111.5068 (10)C14—H140.93
N2—C91.4049 (10)C15—C161.3936 (14)
N2—C101.4478 (11)C15—C181.5026 (13)
N2—H1N20.874 (15)C16—C171.3907 (12)
C1—C21.5188 (11)C16—H160.93
C1—H1A0.97C17—H170.93
C1—H1B0.97C18—H18A0.96
C2—C101.5225 (11)C18—H18B0.96
C2—C31.5241 (10)C18—H18C0.96
C2—H20.98C19—C241.3947 (11)
C3—C191.5167 (11)C19—C201.3984 (12)
C3—C41.5289 (12)C20—C211.3906 (12)
C3—H30.98C20—H200.93
C4—C51.3979 (11)C21—C221.3921 (15)
C4—C91.4100 (11)C21—H210.93
C5—C61.3879 (13)C22—C231.3846 (16)
C5—H50.93C22—H220.93
C6—C71.3937 (13)C23—C241.3967 (13)
C6—H60.93C23—H230.93
C7—C81.3874 (12)C24—H240.93
C7—H70.93C25—C261.5234 (12)
C8—C91.4003 (12)C25—H25A0.97
C8—H80.93C25—H25B0.97
C10—C111.5410 (11)C26—H26A0.96
C10—H100.98C26—H26B0.96
C11—C251.5235 (10)C26—H26C0.96
C11—H110.98
O2—S1—O1119.99 (4)N1—C11—H11109.5
O2—S1—N1106.92 (4)C25—C11—H11109.5
O1—S1—N1106.32 (4)C10—C11—H11109.5
O2—S1—C12107.98 (4)C17—C12—C13120.56 (7)
O1—S1—C12108.51 (4)C17—C12—S1120.00 (6)
N1—S1—C12106.36 (4)C13—C12—S1119.15 (6)
C1—N1—C11109.19 (6)C14—C13—C12119.34 (8)
C1—N1—S1116.25 (5)C14—C13—H13120.3
C11—N1—S1117.17 (5)C12—C13—H13120.3
C9—N2—C10116.54 (7)C13—C14—C15120.86 (8)
C9—N2—H1N2113.8 (10)C13—C14—H14119.6
C10—N2—H1N2116.9 (10)C15—C14—H14119.6
N1—C1—C2102.47 (6)C16—C15—C14118.90 (8)
N1—C1—H1A111.3C16—C15—C18120.51 (9)
C2—C1—H1A111.3C14—C15—C18120.59 (9)
N1—C1—H1B111.3C17—C16—C15120.98 (8)
C2—C1—H1B111.3C17—C16—H16119.5
H1A—C1—H1B109.2C15—C16—H16119.5
C1—C2—C10101.01 (6)C16—C17—C12119.25 (8)
C1—C2—C3119.66 (6)C16—C17—H17120.4
C10—C2—C3111.59 (6)C12—C17—H17120.4
C1—C2—H2108.0C15—C18—H18A109.5
C10—C2—H2108.0C15—C18—H18B109.5
C3—C2—H2108.0H18A—C18—H18B109.5
C19—C3—C2111.25 (6)C15—C18—H18C109.5
C19—C3—C4113.39 (6)H18A—C18—H18C109.5
C2—C3—C4107.44 (6)H18B—C18—H18C109.5
C19—C3—H3108.2C24—C19—C20118.46 (8)
C2—C3—H3108.2C24—C19—C3120.93 (7)
C4—C3—H3108.2C20—C19—C3120.59 (7)
C5—C4—C9118.20 (8)C21—C20—C19120.91 (8)
C5—C4—C3120.56 (7)C21—C20—H20119.5
C9—C4—C3121.24 (7)C19—C20—H20119.5
C6—C5—C4122.28 (8)C20—C21—C22119.93 (9)
C6—C5—H5118.9C20—C21—H21120.0
C4—C5—H5118.9C22—C21—H21120.0
C5—C6—C7118.98 (8)C23—C22—C21119.88 (8)
C5—C6—H6120.5C23—C22—H22120.1
C7—C6—H6120.5C21—C22—H22120.1
C8—C7—C6119.98 (9)C22—C23—C24120.05 (9)
C8—C7—H7120.0C22—C23—H23120.0
C6—C7—H7120.0C24—C23—H23120.0
C7—C8—C9121.06 (8)C19—C24—C23120.76 (9)
C7—C8—H8119.5C19—C24—H24119.6
C9—C8—H8119.5C23—C24—H24119.6
C8—C9—N2118.22 (7)C26—C25—C11113.64 (7)
C8—C9—C4119.46 (7)C26—C25—H25A108.8
N2—C9—C4122.27 (8)C11—C25—H25A108.8
N2—C10—C2108.59 (6)C26—C25—H25B108.8
N2—C10—C11114.73 (6)C11—C25—H25B108.8
C2—C10—C11103.44 (6)H25A—C25—H25B107.7
N2—C10—H10109.9C25—C26—H26A109.5
C2—C10—H10109.9C25—C26—H26B109.5
C11—C10—H10109.9H26A—C26—H26B109.5
N1—C11—C25109.71 (6)C25—C26—H26C109.5
N1—C11—C10103.05 (6)H26A—C26—H26C109.5
C25—C11—C10115.45 (6)H26B—C26—H26C109.5
O2—S1—N1—C1−175.61 (6)S1—N1—C11—C25100.35 (7)
O1—S1—N1—C155.08 (6)C1—N1—C11—C10−1.35 (7)
C12—S1—N1—C1−60.43 (6)S1—N1—C11—C10−136.16 (5)
O2—S1—N1—C11−43.94 (6)N2—C10—C11—N1146.21 (6)
O1—S1—N1—C11−173.24 (5)C2—C10—C11—N128.11 (7)
C12—S1—N1—C1171.25 (6)N2—C10—C11—C25−94.20 (8)
C11—N1—C1—C2−25.88 (8)C2—C10—C11—C25147.70 (7)
S1—N1—C1—C2109.40 (6)O2—S1—C12—C17−157.41 (7)
N1—C1—C2—C1042.60 (7)O1—S1—C12—C17−25.90 (8)
N1—C1—C2—C3165.43 (6)N1—S1—C12—C1788.13 (7)
C1—C2—C3—C1966.47 (9)O2—S1—C12—C1328.75 (8)
C10—C2—C3—C19−176.03 (6)O1—S1—C12—C13160.27 (7)
C1—C2—C3—C4−168.88 (7)N1—S1—C12—C13−85.71 (7)
C10—C2—C3—C4−51.38 (8)C17—C12—C13—C14−2.42 (13)
C19—C3—C4—C5−34.90 (10)S1—C12—C13—C14171.38 (7)
C2—C3—C4—C5−158.25 (7)C12—C13—C14—C15−0.53 (13)
C19—C3—C4—C9145.35 (7)C13—C14—C15—C163.15 (13)
C2—C3—C4—C922.00 (10)C13—C14—C15—C18−176.99 (9)
C9—C4—C5—C61.08 (12)C14—C15—C16—C17−2.88 (13)
C3—C4—C5—C6−178.67 (7)C18—C15—C16—C17177.26 (8)
C4—C5—C6—C70.52 (13)C15—C16—C17—C120.00 (13)
C5—C6—C7—C8−1.07 (14)C13—C12—C17—C162.68 (12)
C6—C7—C8—C90.01 (15)S1—C12—C17—C16−171.07 (6)
C7—C8—C9—N2−175.93 (9)C2—C3—C19—C24−112.37 (8)
C7—C8—C9—C41.62 (14)C4—C3—C19—C24126.40 (8)
C10—N2—C9—C8−165.08 (8)C2—C3—C19—C2066.09 (10)
C10—N2—C9—C417.45 (12)C4—C3—C19—C20−55.15 (10)
C5—C4—C9—C8−2.12 (12)C24—C19—C20—C210.65 (13)
C3—C4—C9—C8177.63 (8)C3—C19—C20—C21−177.84 (8)
C5—C4—C9—N2175.32 (8)C19—C20—C21—C22−0.05 (14)
C3—C4—C9—N2−4.93 (12)C20—C21—C22—C23−0.27 (14)
C9—N2—C10—C2−45.97 (9)C21—C22—C23—C24−0.02 (14)
C9—N2—C10—C11−161.12 (7)C20—C19—C24—C23−0.94 (13)
C1—C2—C10—N2−166.38 (6)C3—C19—C24—C23177.54 (8)
C3—C2—C10—N265.36 (8)C22—C23—C24—C190.64 (14)
C1—C2—C10—C11−44.09 (7)N1—C11—C25—C26−179.71 (7)
C3—C2—C10—C11−172.34 (6)C10—C11—C25—C2664.43 (9)
C1—N1—C11—C25−124.83 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.403.3215 (13)171
C23—H23···O2ii0.932.533.2821 (13)138
C2—H2···Cg10.982.943.8269 (9)151
C7—H7···Cg3i0.932.953.7883 (12)151
C10—H10···Cg2iii0.982.833.8072 (9)178

Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z; (iii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2188).

References

  • Anzini, M., Cappelli, A., Vomero, S., Botta, M. & Cagnotto, A. (1990). Il Farmaco, 45, 1169–1179. [PubMed]
  • Anzini, M., Cappelli, A., Vomero, S., Cagnotto, A. & Skorupska, M. (1992). Il Farmaco, 47, 191–202. [PubMed]
  • Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Crenshaw, R. R., Luke, G. M. & Siminoff, P. (1976). J. Med. Chem.19, 262–275. [PubMed]
  • Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271–383. New York: Wiley.
  • Fujita, M., Egawa, H., Miyamoto, T., Nakano, J. & Matsumoto, J. (1996). Eur. J. Med. Chem.31, 981–988.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o4914–o4915.
  • Sudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2008). Acta Cryst. E64, o134. [PMC free article] [PubMed]
  • Xiao, X.-S., Antony, S., Pommier, Y. & Cushman, M. (2006). J. Med. Chem.49, 1408–1412. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography