PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o353.
Published online 2008 January 4. doi:  10.1107/S1600536807067402
PMCID: PMC2960212

N,N-Dimethyl-4-[5-(5-methyl-1-phenyl-1H-pyrazol-4-yl)-1,3,4-oxadiazol-2-yl]aniline

Abstract

In the mol­ecule of the title compound, C20H19N5O, the pyrazole and oxadiazole rings are not completely conjugated, the dihedral angle between them being 7.97 (6)°. The pyrazole and oxadiazole rings form dihedral angles of 42.74 (6) and 4.35 (5)° with the attached phenyl and benzene rings, respectively.

Related literature

For related literature, see: Ashton et al. (1993 [triangle]); Charles et al. (2004 [triangle]); Coswami et al. (1984 [triangle]); Wang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o353-scheme1.jpg

Experimental

Crystal data

  • C20H19N5O
  • M r = 345.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o353-efi1.jpg
  • a = 17.746 (7) Å
  • b = 6.942 (3) Å
  • c = 14.474 (6) Å
  • β = 99.738 (5)°
  • V = 1757.6 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 (2) K
  • 0.28 × 0.20 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.976, T max = 0.993
  • 9198 measured reflections
  • 3096 independent reflections
  • 2212 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.108
  • S = 1.04
  • 3096 reflections
  • 238 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 1999 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067402/rz2184sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067402/rz2184Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the National Science Found­ation of China (No. 20572057) and the Natural Science Foundation of Shandong Province (No. Y2006B11)

supplementary crystallographic information

Comment

In recent years, 1,3,4-oxadiazole derivatives have been extensively studied due to their broad biological activities, such as herbicidal, insecticidal and fungicidal activities (Coswami et al., 1984). Pyrazoles, as an important class of compounds in medicinal chemistry, constitute the basic framework of drugs in many pharmacological and medicinal applications (Ashton et al., 1993). Bis-heterocycles with high bioactivity have been reported in literature (Charles et al., 2004). In a continuation of our study on structure-activity relationship (Wang et al., 2006), we report here the crystal structure of the title compound (Fig.1), which was synthesized from N'-(4-(dimethylamino)benzylidene)-5-methyl-1-phenyl-1H-pyrazole-4 -carbohydrazide.

Most bond lengths and angles in the title compound are as expected for this type of compounds. The N4—C12 bond length (1.290 (2) Å) in the oxadiazole ring is shorter than the N2—C9 bond length (1.311 (2) Å) in the pyrazole ring, while the N3—N4 bond length (1.4140 (19) Å) is longer than the N1—N2 bond distance (1.3701 (18) Å). This could be ascribed to the strong electron withdrawing effect of the oxygen atom in the oxadiazole ring. In addition, because of the conjugated effect among oxygen and the two C=N bonds, the C—O bond lengths are shorter than the normal C—O single bond (1.42–1.46 Å). The pyrazole and oxadiazole rings are not completely conjugated, the dihedral angle between them being 7.97 (6)°. The dihedral angles formed by the pyrazole and oxadiazole rings with the attached phenyl and benzene rings are 42.74 (6) and 4.35 (5)° respectively.

Experimental

A mixture of N'-(4-(dimethylamino)benzylidene)-5-methyl-1-phenyl-1H-pyrazole -4-carbohydrazide (0.694 g, 2 mmol), obtained according to a previously reported procedure (Wang et al., 2006), iodosobenzene diacetate (0.644 g, 2 mmol) and anhydrous ethanol (50 ml) was stirred in a 100 ml flask at room temperature for 2 h. The solid product formed was then filtered and washed with anhydrous ethanol. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (m.p. 488 K).

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93–0.96 A%, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl groups.

Figures

Fig. 1.
View of the title compound with 35% probability ellipsoid.

Crystal data

C20H19N5OF000 = 728
Mr = 345.40Dx = 1.305 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2162 reflections
a = 17.746 (7) Åθ = 2.3–23.1º
b = 6.942 (3) ŵ = 0.09 mm1
c = 14.474 (6) ÅT = 293 (2) K
β = 99.738 (5)ºPlate, colourless
V = 1757.6 (12) Å30.28 × 0.20 × 0.08 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer3096 independent reflections
Radiation source: fine-focus sealed tube2212 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.025
T = 293(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −21→20
Tmin = 0.976, Tmax = 0.993k = −7→8
9198 measured reflectionsl = −15→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.108  w = 1/[σ2(Fo2) + (0.0598P)2 + 0.1148P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3096 reflectionsΔρmax = 0.19 e Å3
238 parametersΔρmin = −0.19 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.23457 (6)0.46275 (15)0.97159 (7)0.0441 (3)
N10.36081 (7)0.98159 (18)0.95277 (9)0.0419 (3)
N20.35181 (8)1.0599 (2)1.03710 (9)0.0519 (4)
N30.22892 (9)0.5614 (2)1.11520 (10)0.0546 (4)
N40.18766 (9)0.3870 (2)1.09869 (10)0.0554 (4)
N50.07036 (9)−0.3315 (2)0.82215 (11)0.0683 (5)
C10.46094 (10)1.2036 (2)0.92564 (13)0.0560 (5)
H10.48141.19980.98920.067*
C20.49418 (11)1.3160 (3)0.86493 (16)0.0666 (6)
H20.53751.38820.88780.080*
C30.46404 (12)1.3224 (3)0.77106 (16)0.0659 (6)
H30.48691.39840.73070.079*
C40.40026 (11)1.2166 (2)0.73698 (13)0.0560 (5)
H40.38021.21990.67330.067*
C50.36550 (9)1.1050 (2)0.79661 (11)0.0465 (4)
H50.32141.03610.77360.056*
C60.39648 (9)1.0964 (2)0.89030 (11)0.0412 (4)
C70.32987 (9)0.8024 (2)0.93957 (10)0.0400 (4)
C80.29830 (9)0.7646 (2)1.01870 (10)0.0420 (4)
C90.31435 (10)0.9277 (2)1.07553 (12)0.0516 (4)
H90.30000.94081.13410.062*
C100.33531 (11)0.6795 (3)0.85662 (12)0.0558 (5)
H10A0.29110.69980.80940.084*
H10B0.33790.54650.87500.084*
H10C0.38050.71300.83190.084*
C110.25474 (9)0.5991 (2)1.03925 (11)0.0428 (4)
C120.19272 (9)0.3352 (2)1.01439 (11)0.0427 (4)
C130.16085 (9)0.1674 (2)0.96261 (11)0.0430 (4)
C140.17535 (9)0.1234 (2)0.87380 (12)0.0471 (4)
H140.20540.20630.84500.057*
C150.14621 (9)−0.0402 (3)0.82743 (12)0.0501 (4)
H150.1573−0.06630.76810.060*
C160.10020 (9)−0.1681 (2)0.86788 (12)0.0484 (4)
C170.08488 (10)−0.1211 (3)0.95697 (12)0.0539 (5)
H170.0540−0.20200.98560.065*
C180.11459 (10)0.0419 (3)1.00279 (12)0.0519 (4)
H180.10360.06911.06200.062*
C190.09588 (13)−0.4001 (3)0.73912 (15)0.0736 (6)
H19A0.0894−0.30050.69240.110*
H19B0.0664−0.51090.71550.110*
H19C0.1489−0.43490.75390.110*
C200.02076 (12)−0.4574 (3)0.86451 (16)0.0731 (6)
H20A0.0480−0.50610.92280.110*
H20B0.0047−0.56310.82300.110*
H20C−0.0233−0.38660.87580.110*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0498 (6)0.0455 (6)0.0386 (6)−0.0029 (5)0.0125 (5)0.0024 (5)
N10.0463 (8)0.0422 (8)0.0365 (8)−0.0030 (6)0.0049 (6)−0.0006 (6)
N20.0677 (9)0.0506 (8)0.0369 (8)−0.0056 (7)0.0077 (7)−0.0051 (6)
N30.0693 (10)0.0535 (9)0.0438 (9)−0.0081 (8)0.0180 (7)−0.0004 (7)
N40.0689 (10)0.0561 (9)0.0450 (9)−0.0106 (8)0.0205 (7)−0.0011 (7)
N50.0716 (11)0.0739 (11)0.0617 (10)−0.0230 (9)0.0175 (8)−0.0193 (8)
C10.0505 (10)0.0482 (10)0.0648 (12)−0.0017 (8)−0.0034 (9)0.0090 (9)
C20.0499 (11)0.0521 (11)0.0978 (17)−0.0068 (9)0.0128 (11)0.0138 (11)
C30.0708 (14)0.0469 (11)0.0880 (16)0.0084 (10)0.0362 (12)0.0188 (10)
C40.0711 (13)0.0479 (10)0.0527 (11)0.0103 (9)0.0217 (9)0.0107 (8)
C50.0489 (10)0.0443 (9)0.0468 (10)0.0035 (8)0.0094 (8)0.0035 (8)
C60.0415 (9)0.0371 (9)0.0453 (10)0.0027 (7)0.0079 (7)0.0052 (7)
C70.0410 (9)0.0387 (9)0.0395 (9)0.0031 (7)0.0045 (7)0.0005 (7)
C80.0458 (9)0.0429 (9)0.0367 (9)0.0017 (7)0.0054 (7)0.0032 (7)
C90.0653 (11)0.0541 (11)0.0359 (9)−0.0042 (9)0.0102 (8)0.0012 (8)
C100.0702 (12)0.0481 (10)0.0536 (11)−0.0042 (9)0.0239 (9)−0.0066 (8)
C110.0469 (9)0.0444 (9)0.0367 (9)0.0044 (7)0.0060 (7)0.0023 (7)
C120.0431 (9)0.0465 (9)0.0405 (9)0.0017 (7)0.0124 (7)0.0081 (7)
C130.0439 (9)0.0466 (9)0.0396 (9)0.0023 (7)0.0103 (7)0.0043 (7)
C140.0442 (9)0.0541 (10)0.0457 (10)0.0002 (8)0.0148 (7)0.0077 (8)
C150.0495 (10)0.0626 (11)0.0399 (10)0.0008 (9)0.0127 (8)−0.0014 (8)
C160.0435 (9)0.0570 (10)0.0440 (10)−0.0014 (8)0.0052 (7)−0.0016 (8)
C170.0548 (10)0.0601 (11)0.0494 (11)−0.0138 (9)0.0163 (8)0.0006 (9)
C180.0590 (11)0.0586 (11)0.0418 (10)−0.0081 (9)0.0192 (8)−0.0008 (8)
C190.0827 (14)0.0702 (13)0.0685 (14)−0.0006 (11)0.0145 (11)−0.0198 (11)
C200.0697 (13)0.0660 (13)0.0822 (15)−0.0179 (11)0.0089 (11)−0.0085 (11)

Geometric parameters (Å, °)

O1—C111.3656 (19)C7—C101.489 (2)
O1—C121.3694 (18)C8—C91.400 (2)
N1—C71.360 (2)C8—C111.443 (2)
N1—N21.3701 (18)C9—H90.9300
N1—C61.431 (2)C10—H10A0.9600
N2—C91.311 (2)C10—H10B0.9600
N3—C111.287 (2)C10—H10C0.9600
N3—N41.4140 (19)C12—C131.447 (2)
N4—C121.290 (2)C13—C141.387 (2)
N5—C161.374 (2)C13—C181.390 (2)
N5—C191.435 (2)C14—C151.375 (2)
N5—C201.448 (2)C14—H140.9300
C1—C21.380 (3)C15—C161.400 (2)
C1—C61.388 (2)C15—H150.9300
C1—H10.9300C16—C171.401 (2)
C2—C31.374 (3)C17—C181.371 (2)
C2—H20.9300C17—H170.9300
C3—C41.369 (3)C18—H180.9300
C3—H30.9300C19—H19A0.9600
C4—C51.380 (2)C19—H19B0.9600
C4—H40.9300C19—H19C0.9600
C5—C61.376 (2)C20—H20A0.9600
C5—H50.9300C20—H20B0.9600
C7—C81.383 (2)C20—H20C0.9600
C11—O1—C12102.73 (12)C7—C10—H10C109.5
C7—N1—N2112.53 (13)H10A—C10—H10C109.5
C7—N1—C6129.20 (13)H10B—C10—H10C109.5
N2—N1—C6118.20 (13)N3—C11—O1112.53 (14)
C9—N2—N1104.12 (13)N3—C11—C8128.20 (15)
C11—N3—N4106.20 (14)O1—C11—C8119.24 (13)
C12—N4—N3106.35 (13)N4—C12—O1112.19 (14)
C16—N5—C19121.80 (16)N4—C12—C13129.10 (15)
C16—N5—C20120.45 (16)O1—C12—C13118.71 (14)
C19—N5—C20117.04 (16)C14—C13—C18117.70 (15)
C2—C1—C6118.87 (18)C14—C13—C12122.67 (15)
C2—C1—H1120.6C18—C13—C12119.63 (15)
C6—C1—H1120.6C15—C14—C13121.40 (15)
C3—C2—C1120.74 (19)C15—C14—H14119.3
C3—C2—H2119.6C13—C14—H14119.3
C1—C2—H2119.6C14—C15—C16121.18 (16)
C4—C3—C2119.91 (18)C14—C15—H15119.4
C4—C3—H3120.0C16—C15—H15119.4
C2—C3—H3120.0N5—C16—C15121.80 (16)
C3—C4—C5120.35 (18)N5—C16—C17121.12 (16)
C3—C4—H4119.8C15—C16—C17117.07 (16)
C5—C4—H4119.8C18—C17—C16121.26 (16)
C6—C5—C4119.63 (17)C18—C17—H17119.4
C6—C5—H5120.2C16—C17—H17119.4
C4—C5—H5120.2C17—C18—C13121.39 (16)
C5—C6—C1120.47 (15)C17—C18—H18119.3
C5—C6—N1120.09 (14)C13—C18—H18119.3
C1—C6—N1119.40 (15)N5—C19—H19A109.5
N1—C7—C8105.52 (13)N5—C19—H19B109.5
N1—C7—C10123.88 (14)H19A—C19—H19B109.5
C8—C7—C10130.53 (15)N5—C19—H19C109.5
C7—C8—C9105.22 (14)H19A—C19—H19C109.5
C7—C8—C11128.89 (14)H19B—C19—H19C109.5
C9—C8—C11125.83 (15)N5—C20—H20A109.5
N2—C9—C8112.60 (15)N5—C20—H20B109.5
N2—C9—H9123.7H20A—C20—H20B109.5
C8—C9—H9123.7N5—C20—H20C109.5
C7—C10—H10A109.5H20A—C20—H20C109.5
C7—C10—H10B109.5H20B—C20—H20C109.5
H10A—C10—H10B109.5
C7—N1—N2—C9−0.54 (17)C12—O1—C11—N30.19 (16)
C6—N1—N2—C9176.53 (13)C12—O1—C11—C8−178.00 (13)
C11—N3—N4—C120.29 (18)C7—C8—C11—N3176.18 (16)
C6—C1—C2—C30.1 (3)C9—C8—C11—N3−7.0 (3)
C1—C2—C3—C40.1 (3)C7—C8—C11—O1−5.9 (2)
C2—C3—C4—C50.7 (3)C9—C8—C11—O1170.91 (15)
C3—C4—C5—C6−1.7 (2)N3—N4—C12—O1−0.18 (18)
C4—C5—C6—C12.0 (2)N3—N4—C12—C13−179.99 (15)
C4—C5—C6—N1179.85 (14)C11—O1—C12—N40.01 (16)
C2—C1—C6—C5−1.2 (3)C11—O1—C12—C13179.84 (13)
C2—C1—C6—N1−179.07 (16)N4—C12—C13—C14−175.58 (17)
C7—N1—C6—C541.8 (2)O1—C12—C13—C144.6 (2)
N2—N1—C6—C5−134.74 (15)N4—C12—C13—C183.4 (3)
C7—N1—C6—C1−140.34 (17)O1—C12—C13—C18−176.37 (14)
N2—N1—C6—C143.1 (2)C18—C13—C14—C15−1.1 (2)
N2—N1—C7—C80.98 (17)C12—C13—C14—C15177.95 (15)
C6—N1—C7—C8−175.69 (14)C13—C14—C15—C160.5 (2)
N2—N1—C7—C10−176.36 (14)C19—N5—C16—C1512.1 (3)
C6—N1—C7—C107.0 (2)C20—N5—C16—C15−177.81 (17)
N1—C7—C8—C9−0.98 (16)C19—N5—C16—C17−168.77 (18)
C10—C7—C8—C9176.12 (17)C20—N5—C16—C171.3 (3)
N1—C7—C8—C11176.38 (15)C14—C15—C16—N5179.64 (16)
C10—C7—C8—C11−6.5 (3)C14—C15—C16—C170.5 (2)
N1—N2—C9—C8−0.13 (19)N5—C16—C17—C18180.00 (17)
C7—C8—C9—N20.72 (19)C15—C16—C17—C18−0.8 (3)
C11—C8—C9—N2−176.75 (14)C16—C17—C18—C130.2 (3)
N4—N3—C11—O1−0.30 (18)C14—C13—C18—C170.7 (2)
N4—N3—C11—C8177.69 (15)C12—C13—C18—C17−178.34 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2184).

References

  • Ashton, W. T., Hutchins, S. M., Greenlee, W. J., Doss, G. A., Chang, R. S. L., Lotti, V. J., Faust, K. A., Chen, T. B., Zingaro, G. J., Kivlighn, S. D. & Siegl, P. K. S. (1993). J. Med. Chem.36, 3595–3605. [PubMed]
  • Bruker (1999). SAINT and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2000). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Charles, Q., Huang, K. M. & Wilcoxen, D. E. (2004). Bioorg. Med. Chem. Lett.14, 3943–3947. [PubMed]
  • Coswami, B. N., Kataky, J. C. S. & Baruash, J. N. (1984). J. Heterocycl. Chem.21, 205–208.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Wang, S.-W., Wen, L.-R. & Miao, Y.-F. (2006). Acta Cryst. E62, o3471–o3472.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography