PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m320–m321.
Published online 2008 January 9. doi:  10.1107/S160053680706850X
PMCID: PMC2960211

catena-Poly[[triaqua­cadmium(II)]-μ-pyridine-2,3-dicarboxyl­ato-κ3 N,O 2:O 3]

Abstract

The title polymeric compound, [Cd(C7H3NO4)(H2O)3]n or [Cd(py-2,3-dc)(H2O)3]n, where py-2,3-dcH2 is pyridine-2,3-dicarboxylic acid, was obtained by the reaction of cadmium(II) nitrate hexa­hydrate with (pipzH2)(py-2,3-dc) as a proton-transfer compound in aqueous solution (pipz is piperazine). The mol­ecular structure shows that only the anionic fragment of the starting proton-transfer compound is present in the complex, while the (pipzH2)2+ dication has been lost. Each (py-2,3-dc)2− ligand bridges two CdII atoms in two different coordination modes, i.e. one end acts as a monodentate and the other end as a bidentate ligand. The three remaining coordination sites on the metal center are occupied by water mol­ecules. The geometric arrangement of the six donor atoms around the CdII atom is distorted octa­hedral. In the crystal structure, O—H(...)O and C—H(...)O hydrogen bonds play an important role in stabilizing the supra­molecular structure.

Related literature

For related ion pairs or complexes, see: Aghabozorg, Daneshvar, Motyeian et al. (2007 [triangle]); Aghabozorg et al. (2008 [triangle]); Manteghi et al. (2007 [triangle]); Aghabozorg, Sadr-khanlou et al. (2007 [triangle]); Li et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m320-scheme1.jpg

Experimental

Crystal data

  • [Cd(C7H3NO4)(H2O)3]
  • M r = 331.55
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m320-efi6.jpg
  • a = 16.820 (3) Å
  • b = 6.8076 (14) Å
  • c = 8.6658 (17) Å
  • V = 992.3 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.22 mm−1
  • T = 100 (2) K
  • 0.40 × 0.08 × 0.05 mm

Data collection

  • Bruker APEX 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (APEX2; Bruker, 2005 [triangle]) T min = 0.810, T max = 0.901
  • 8990 measured reflections
  • 2255 independent reflections
  • 1848 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.056
  • S = 1.01
  • 2255 reflections
  • 151 parameters
  • 7 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.84 e Å−3
  • Absolute structure: Flack (1983), 1042 Friedel pairs
  • Flack parameter: 0.05 (4)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 1998 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680706850X/su2028sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706850X/su2028Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Recently, ion pairs or complexes related to the title compound have been reported (Aghabozorg, Daneshvar, Motyeian et al., 2007). Proton transfer from pyridine-2,3-dicarboxylic acid (py-2,3-dcH2) to amines, such as piperazine (pipz) and propane-1,3-diamine (pn), resulted in the formation of novel systems (Aghabozorg, Manteghi et al., 2007 submitted; Manteghi et al., 2007). The resulting compounds, with some remaining sites as electron donors, can coordinate to metallic ions (Aghabozorg, Sadr-khanlou et al., 2007). The molecular structure of the title compound shows that only the anionic fragment of starting proton transfer compound is incorporated into the complex and that the (pipzH2)2+ dication has been lost. Each cadmium(II) atom is coordinated by five O-atoms and one N-atom. The asymmetric unit consists of one cadmium, one bridging (py-2,3-dc)2- and three coordinated water molecules (Fig. 1). The (py-2,3-dc)2- groups bridge two cadmium ions by adopting two different coordination modes, bidentate and monodentate. The existance of both coordination modes is seldom found in pyridine multicarboxylate coordination polymers (Li et al. 2004). The bond lengths and bond angles of the equatorial bonds around the metal center with atoms N1A, O2A, O1W and O2W, and the axial bonds with atoms O4 and O3W, indicate that the geometric arrangement of the six donor atoms around the cadmium(II) atom is distorted octahedral (Table 1). It is noticeable that one of the carboxylate groups is almost coplannar with the pyridine ring and the other is perpendicular to it (Fig. 1). The formation of the polymeric chains along the c axis is illustrated in Fig. 2. There are a number of O—H···O hydrogen bonds (Table 2) involving the coordinated water molecules and other O-atoms, [D···A distances ranging from 2.685 (5) to 2.789 (5) Å], and a C—H···O bond [D···A distance of 3.430 (6) Å], that give rise to the formation of a three-dimensional network (Fig. 3).

Experimental

The proton transfer ion pair was prepared according to the literature (Aghabozorg et al., 2008, in press). A solution of Cd(NO3)2. 6H2O (158 mg, 0.5 mmol) in water (20 ml) was added to a solution of (pipzH2)(py- 2,3-dc) (253 mg, 1.0 mmol) in water (20 ml), in a 1:2 molar ratio. Colorless crystals of the title compound suitable for X-ray characterization were obtained after a few days at room temperature.

Refinement

All the hydrogen atoms could be located from the difference Fourier syntheses. The water H-atoms were refined isotropically with Uiso(H) = 0.022. The C-bond H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level. Hydrogen bonds are shown as dashed lines. Atoms marked with suffixes A—E are related by the symmetry codes (A) ...
Fig. 2.
A view of the polymeric chain of the title compound extending along the c axis.
Fig. 3.
A view along the b axis of the crystal packing of the title compound [the hydrogen bonds are shown as dashed lines and the hydrogen atoms of the pyridine-2,3-dicarboxylates ligands are omitted for clarity].

Crystal data

[Cd(C7H3NO4)(H2O)3]F000 = 648
Mr = 331.55Dx = 2.219 Mg m3
Orthorhombic, Pca21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1136 reflections
a = 16.820 (3) Åθ = 3.0–24.6º
b = 6.8076 (14) ŵ = 2.22 mm1
c = 8.6658 (17) ÅT = 100 (2) K
V = 992.3 (3) Å3Needle, colourless
Z = 40.40 × 0.08 × 0.05 mm

Data collection

Bruker APEX 1000 CCD area-detector diffractometer2255 independent reflections
Radiation source: fine-focus sealed tube1848 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.060
T = 100(2) Kθmax = 27.5º
ω scansθmin = 2.4º
Absorption correction: multi-scan(APEX2; Bruker, 2005)h = −21→21
Tmin = 0.810, Tmax = 0.901k = −8→8
8990 measured reflectionsl = −11→11

Refinement

Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029  w = 1/[σ2(Fo2) + (0.02P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.61 e Å3
2255 reflectionsΔρmin = −0.84 e Å3
151 parametersExtinction correction: none
7 restraintsAbsolute structure: Flack (1983), 1042 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.05 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.602315 (16)0.57263 (4)1.12348 (5)0.01148 (8)
O10.64375 (15)0.5438 (4)1.6269 (10)0.0146 (4)
O20.77114 (19)0.4893 (5)1.6812 (4)0.0146 (4)
O30.55536 (18)0.9159 (5)1.5507 (4)0.0139 (7)
O40.56140 (18)0.7169 (5)1.3472 (4)0.0131 (8)
C10.7384 (3)0.7512 (7)1.5083 (6)0.0114 (10)
C20.6813 (3)0.8656 (7)1.4333 (6)0.0120 (11)
C30.7065 (3)1.0220 (8)1.3431 (7)0.0110 (11)
H3A0.66851.10231.29200.013*
C40.7868 (3)1.0616 (8)1.3272 (7)0.0149 (11)
H4A0.80501.16601.26360.018*
C50.8403 (3)0.9424 (8)1.4080 (6)0.0168 (11)
H5A0.89560.96941.40010.020*
C60.7166 (2)0.5813 (6)1.6146 (9)0.0146 (4)
C70.5934 (3)0.8271 (7)1.4475 (5)0.0113 (10)
N10.8168 (2)0.7919 (6)1.4961 (5)0.0125 (9)
O1W0.5482 (2)0.2964 (6)1.2211 (4)0.0145 (8)
H10.526 (3)0.302 (9)1.309 (4)0.022*
H20.509 (2)0.227 (7)1.183 (5)0.022*
O2W0.47743 (19)0.6981 (5)1.0383 (4)0.0134 (7)
H30.439 (2)0.618 (6)1.065 (6)0.020*
H40.464 (3)0.818 (4)1.060 (6)0.020*
O3W0.59058 (19)0.3963 (5)0.9018 (4)0.0147 (8)
H50.5445 (19)0.350 (8)0.879 (7)0.022*
H60.609 (3)0.420 (8)0.811 (3)0.022*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.00902 (12)0.01505 (14)0.01036 (13)−0.00047 (13)0.0004 (3)0.0018 (3)
O10.0109 (8)0.0186 (11)0.0144 (10)0.0005 (8)0.0029 (11)0.0048 (12)
O20.0109 (8)0.0186 (11)0.0144 (10)0.0005 (8)0.0029 (11)0.0048 (12)
O30.0112 (16)0.0158 (18)0.0146 (16)−0.0006 (14)0.0041 (13)−0.0032 (16)
O40.0077 (16)0.023 (2)0.0084 (17)−0.0019 (14)0.0004 (14)−0.0031 (16)
C10.011 (2)0.012 (3)0.011 (2)−0.0042 (19)−0.0063 (19)−0.001 (2)
C20.010 (2)0.014 (3)0.012 (3)−0.0018 (19)0.000 (2)−0.005 (2)
C30.009 (3)0.013 (3)0.011 (3)0.004 (2)0.000 (2)−0.002 (2)
C40.014 (3)0.016 (3)0.014 (3)−0.002 (2)−0.001 (2)0.005 (3)
C50.012 (3)0.020 (3)0.017 (3)−0.004 (2)0.000 (2)−0.004 (3)
C60.0109 (8)0.0186 (11)0.0144 (10)0.0005 (8)0.0029 (11)0.0048 (12)
C70.013 (2)0.011 (3)0.010 (2)−0.001 (2)−0.003 (2)0.0057 (19)
N10.011 (2)0.016 (2)0.010 (2)−0.0057 (17)0.0018 (16)−0.0007 (18)
O1W0.0142 (18)0.022 (2)0.0070 (17)−0.0081 (15)0.0020 (14)−0.0012 (16)
O2W0.0127 (17)0.0119 (19)0.0156 (19)0.0014 (14)−0.0030 (14)−0.0008 (17)
O3W0.0113 (18)0.023 (2)0.0093 (16)−0.0033 (15)0.0003 (14)−0.0040 (16)

Geometric parameters (Å, °)

Cd1—O1W2.254 (4)C2—C71.506 (6)
Cd1—O2i2.259 (3)C3—C41.385 (6)
Cd1—O3W2.274 (3)C3—H3A0.9500
Cd1—O42.279 (3)C4—C51.400 (7)
Cd1—N1i2.302 (4)C4—H4A0.9500
Cd1—O2W2.385 (3)C5—N11.338 (7)
O1—C61.256 (4)C5—H5A0.9500
O2—C61.252 (6)N1—Cd1ii2.302 (4)
O2—Cd1ii2.259 (3)O1W—H10.850 (19)
O3—C71.255 (6)O1W—H20.869 (19)
O4—C71.268 (6)O2W—H30.88 (2)
C1—N11.351 (6)O2W—H40.866 (19)
C1—C21.397 (7)O3W—H50.858 (19)
C1—C61.523 (7)O3W—H60.87 (2)
C2—C31.387 (7)
O1W—Cd1—O2i95.06 (13)C2—C3—H3A119.9
O1W—Cd1—O3W80.89 (13)C3—C4—C5117.7 (5)
O2i—Cd1—O3W97.84 (12)C3—C4—H4A121.1
O1W—Cd1—O485.31 (13)C5—C4—H4A121.1
O2i—Cd1—O4101.79 (12)N1—C5—C4122.6 (5)
O3W—Cd1—O4156.89 (12)N1—C5—H5A118.7
O1W—Cd1—N1i163.70 (14)C4—C5—H5A118.7
O2i—Cd1—N1i73.25 (13)O2—C6—O1125.0 (6)
O3W—Cd1—N1i89.34 (14)O2—C6—C1118.8 (4)
O4—Cd1—N1i107.87 (14)O1—C6—C1116.2 (5)
O1W—Cd1—O2W93.38 (13)O3—C7—O4123.9 (4)
O2i—Cd1—O2W171.30 (12)O3—C7—C2118.3 (4)
O3W—Cd1—O2W81.44 (12)O4—C7—C2117.6 (4)
O4—Cd1—O2W80.96 (12)C5—N1—C1119.4 (4)
N1i—Cd1—O2W98.06 (13)C5—N1—Cd1ii126.5 (3)
C6—O2—Cd1ii117.6 (3)C1—N1—Cd1ii114.0 (3)
C7—O4—Cd1135.2 (3)Cd1—O1W—H1118 (4)
N1—C1—C2121.3 (5)Cd1—O1W—H2128 (3)
N1—C1—C6116.0 (4)H1—O1W—H292 (5)
C2—C1—C6122.6 (4)Cd1—O2W—H3110 (3)
C3—C2—C1118.7 (4)Cd1—O2W—H4120 (4)
C3—C2—C7118.6 (4)H3—O2W—H4110 (5)
C1—C2—C7122.7 (4)Cd1—O3W—H5118 (4)
C4—C3—C2120.2 (5)Cd1—O3W—H6130 (4)
C4—C3—H3A119.9H5—O3W—H6101 (5)
O1W—Cd1—O4—C7131.6 (5)C2—C1—C6—O2−177.9 (5)
O2i—Cd1—O4—C737.4 (5)N1—C1—C6—O1179.6 (6)
O3W—Cd1—O4—C7−175.1 (4)C2—C1—C6—O12.7 (9)
N1i—Cd1—O4—C7−38.6 (5)Cd1—O4—C7—O3168.0 (3)
O2W—Cd1—O4—C7−134.3 (5)Cd1—O4—C7—C2−7.0 (7)
N1—C1—C2—C30.9 (7)C3—C2—C7—O3−87.1 (6)
C6—C1—C2—C3177.6 (5)C1—C2—C7—O392.4 (6)
N1—C1—C2—C7−178.5 (4)C3—C2—C7—O488.2 (6)
C6—C1—C2—C7−1.8 (8)C1—C2—C7—O4−92.3 (6)
C1—C2—C3—C40.6 (9)C4—C5—N1—C10.2 (8)
C7—C2—C3—C4−179.9 (5)C4—C5—N1—Cd1ii176.0 (4)
C2—C3—C4—C5−1.7 (9)C2—C1—N1—C5−1.3 (7)
C3—C4—C5—N11.3 (9)C6—C1—N1—C5−178.3 (5)
Cd1ii—O2—C6—O1175.2 (6)C2—C1—N1—Cd1ii−177.7 (4)
Cd1ii—O2—C6—C1−4.1 (7)C6—C1—N1—Cd1ii5.4 (6)
N1—C1—C6—O2−1.0 (8)

Symmetry codes: (i) −x+3/2, y, z−1/2; (ii) −x+3/2, y, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1···O2Wiii0.85 (2)1.99 (2)2.782 (5)155.61
O1W—H2···O3iv0.87 (2)1.86 (2)2.702 (5)163.55
O2W—H3···O1iv0.88 (2)1.85 (2)2.731 (5)177.88
O2W—H4···O3v0.87 (2)1.84 (2)2.687 (5)164.45
O3W—H5···O4iv0.86 (2)1.86 (2)2.712 (4)171.29
O3W—H6···O1vi0.87 (2)1.89 (2)2.735 (8)164.32
C3—H3A···O1Wvii0.95 (2)2.49 (2)3.420 (6)165

Symmetry codes: (iii) −x+1, −y+1, z+1/2; (iv) −x+1, −y+1, z−1/2; (v) −x+1, −y+2, z−1/2; (vi) x, y, z−1; (vii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2028).

References

  • Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469.
  • Aghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008). Acta Cryst. E64 Submitted for publication.
  • Aghabozorg, H., Sadr-khanlou, E., Soleimannejad, J. & Adams, H. (2007). Acta Cryst. E63, m1769.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, L. J. & Li, Y. (2004). J. Mol. Struct.694, 199–203.
  • Manteghi, F., Ghadermazi, M. & Aghabozorg, H. (2007). Acta Cryst. E63, o2809.
  • Sheldrick, G. M. (1998). SHELXTL Version. 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography