PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o484–o485.
Published online 2008 January 23. doi:  10.1107/S1600536808001542
PMCID: PMC2960210

4-(9-Anthryl)-2-methylbutyn-2-ol

Abstract

There are two mol­ecules in the asymmetric unit of the title compound, C19H16O. Neighbouring mol­ecules are linked through O—H(...)O hydrogen bonds into an R 4 4(8) ring motif. There are also C—H(...)π hydrogen and π–π inter­actions. The mol­ecules are either parallel to each other or are inclined at an angle of 12.5 (1)°.

Related literature

For applications of this class of compounds, see: Bunz (2000 [triangle]); De Silva et al. (1999 [triangle]), Krasovitski & Bolotin (1988 [triangle]); O’Regan & Grätzel (1991 [triangle]); Schumm et al. (1994 [triangle]). For the use of ethynyl­anthracene derivatives in organic synthesis, see Wen et al. (2004 [triangle]); Xiao et al. (2007 [triangle]). For comparison bond dimensions of the anthracene skeleton, see: Cuffet et al. (2005 [triangle]); Elangovan et al. (2005 [triangle]). For the structure of 9,10-bis­(3-hydr­oxy-3-methyl-1-butyne)anthracene, see: Dang et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o484-scheme1.jpg

Experimental

Crystal data

  • C19H16O
  • M r = 260.32
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o484-efi1.jpg
  • a = 9.995 (2) Å
  • b = 12.738 (3) Å
  • c = 12.905 (3) Å
  • α = 75.70 (3)°
  • β = 72.18 (3)°
  • γ = 68.84 (3)°
  • V = 1441.4 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 298 (2) K
  • 0.60 × 0.20 × 0.10 mm

Data collection

  • Kuma KM-4 diffractometer
  • Absorption correction: none
  • 5258 measured reflections
  • 5011 independent reflections
  • 2370 reflections with I > 2σ(I)
  • R int = 0.019
  • 3 standard reflections every 200 reflections intensity decay: 1.1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.170
  • S = 0.98
  • 5011 reflections
  • 366 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: KM-4 Software (Oxford Diffraction, 1995-2003 [triangle]); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)
Table 2
C—H(...)π interactions (Å,°)
Table 3
π–π interactions (Å,°)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808001542/ng2418sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001542/ng2418Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was financially supported by the Ministry of Science and Higher Education (Poland) under grant BW 8000-5-0408-7.

supplementary crystallographic information

Comment

Recently there is a need for molecules containing triple bond because of their electroconductive, magnetic and nonlinear optical properties. This class of the compounds are used as molecular wires (Bunz, 2000), molecular scale logic gates (De Silva et al., 1999), optical and microelectronic devices (Schumm et al., 1994), sensors (Krasovitski & Bolotin, 1988) and molecular photovoltaic cells (O'Regan & Grätzel, 1991)). Ethynylanthracene derivatives are substrates in many synthesis (Wen et al., 2004; Xiao et al., 2007). 2-Methyl-3-butyn-2-ol is an alternative protecting group for (trimethylsilyl)acetylene, more useful in reaction carried at higher temperature (because of its higher boiling point) as well as giving acetylene derivatives containing various substituents in homo- and heterocoupling. Because of that we use this protecting group to synthesize acetylene derivatives to study influence of the aromatic subtituent size on the photophysical properties of the compounds in search for organic material with extended π system, characterized by high fluorescence quantum yield. As an intermediate in the synthesis of anthracene derivative, 9-(3-hydroxy-3-methyl-1-butyne)anthracene was isolated and its crystal structure was determined.

Parameters characterizing the geometry of the anthracene skeleton are typical of anthracene-based derivatives (Cuffet et al., 2005; Elangovan et al., 2005).

In the crystal, the asymmetric unit consists of two molecules of the title compound (Fig. 1) which crystallizing in the triclinic crystal system, in P -1 space group, as well as 9,10-bis(3-hydroxy-3-methyl-1-butyne)anthracene (Dang et al., 2002).

In the crystal structure, neighbouring molecules are linked through O—H···O hydrogen bond forming R44(8) ring motif (Table 1 and Fig. 2). Molecules which forming this motif are linked by C—H···π hydrogen bonds (Table 2 and Fig. 2) or π-π interactions (Table 3 and Fig. 2). In the packing, the anthracene moieties are either parallel or inclined at an angle of 12.5 (1)°.

Experimental

9-(3-hydroxy-3-methyl-1-butyne)anthracene has been synthesized by Sonogashira-Hagihara coupling from 9-bromoanthracene (10 mmol) and 2-methyl-3-butyn-2-ol (20 mmol) in DMF in the presence of Pd(PPh3)4 (0.0162 mmol) and Cu2I2 (0.13 mmol) as catalysts, triphenylphosphine (0.16 mmol), triethylamine (12 ml). The mixture was stirred at 333 K under argon atmosphere for 24 h. The reaction was monitored by TLC (petroleum ether-ethyl/acetate 10:1 v/v, Rf=0.64; Merck Silica-gel plates (Kieselgel 60 F254)). When the reaction was completed the catalysts were filtered off, filtrate was poured into water and extracted with ethyl acetate. The brownish-red organic layer was dried over anhydrous MgSO4. The solvent was removed in vacuo giving a brownish-red oil. The crude was isolated by column chromatography on silica gel (Merck, Silica gel 60, 0.040–0.063 mm) using petroleum ether-ethyl/acetate (10:1 v/v) as an eluent and then crystallized from ethyl acetate to give yellow crystals (79% yield) [m.p. = 400–402 K].

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C) (C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for the methyl group) and O—H distances of 0.82 Å and with Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radii. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. ...
Fig. 2.
The arrangement of the ions in the unit cell, viewed along the c axis, showing R44(8) ring motifs. The O—H···O interactions are represented by dashed lines, and C—H···π and π-π ...

Crystal data

C19H16OZ = 4
Mr = 260.32F000 = 552
Triclinic, P1Dx = 1.200 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.995 (2) ÅCell parameters from 50 reflections
b = 12.738 (3) Åθ = 2.2–25.0º
c = 12.905 (3) ŵ = 0.07 mm1
α = 75.70 (3)ºT = 298 (2) K
β = 72.18 (3)ºBlock, white
γ = 68.84 (3)º0.60 × 0.20 × 0.10 mm
V = 1441.4 (7) Å3

Data collection

Kuma KM4 diffractometerRint = 0.019
Radiation source: fine-focus sealed tubeθmax = 25.0º
Monochromator: graphiteθmin = 2.2º
T = 298(2) Kh = −11→11
θ/2θ scansk = −14→14
Absorption correction: nonel = 0→15
5258 measured reflections3 standard reflections
5011 independent reflections every 200 reflections
2370 reflections with I > 2σ(I) intensity decay: 1.1%

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051  w = 1/[σ2(Fo2) + (0.0961P)2 + 0.1391P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.170(Δ/σ)max < 0.001
S = 0.98Δρmax = 0.25 e Å3
5011 reflectionsΔρmin = −0.34 e Å3
366 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (4)
Secondary atom site location: difference Fourier map

Special details

Experimental. no
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6439 (3)0.6352 (3)0.2744 (3)0.0703 (8)
H10.60360.67300.33530.084*
C20.7751 (4)0.6414 (3)0.2076 (3)0.0873 (10)
H20.82360.68390.22270.105*
C30.8389 (4)0.5848 (3)0.1160 (3)0.0878 (11)
H30.92930.58970.07050.105*
C40.7694 (3)0.5232 (3)0.0939 (3)0.0767 (9)
H40.81330.48500.03330.092*
C50.5568 (3)0.4561 (2)0.1365 (2)0.0635 (8)
H50.60000.41820.07570.076*
C60.3395 (4)0.3939 (3)0.1734 (3)0.0737 (9)
H60.38220.35520.11300.088*
C70.2042 (4)0.3938 (3)0.2325 (3)0.0816 (10)
H70.15330.35650.21250.098*
C80.1392 (4)0.4496 (3)0.3240 (3)0.0763 (9)
H80.04420.45070.36430.092*
C90.2129 (3)0.5021 (2)0.3547 (2)0.0626 (8)
H90.16930.53640.41780.075*
C100.4290 (3)0.5670 (2)0.3197 (2)0.0519 (7)
C110.5670 (3)0.5725 (2)0.2536 (2)0.0549 (7)
C120.6313 (3)0.5154 (2)0.1606 (2)0.0571 (7)
C130.3538 (3)0.5062 (2)0.2937 (2)0.0497 (6)
C140.4198 (3)0.4511 (2)0.1999 (2)0.0565 (7)
C150.3608 (3)0.6290 (2)0.4102 (2)0.0528 (7)
C160.3033 (3)0.6851 (2)0.4820 (2)0.0508 (7)
C170.2380 (3)0.7569 (2)0.5676 (2)0.0473 (6)
O180.1648 (2)0.86882 (14)0.52019 (15)0.0609 (5)
H180.14760.91390.56180.091*
C190.1281 (3)0.7122 (3)0.6591 (2)0.0733 (9)
H19A0.04700.71630.63160.110*
H19B0.09210.75720.71730.110*
H19C0.17480.63440.68690.110*
C200.3575 (3)0.7670 (3)0.6081 (3)0.0732 (9)
H20A0.42490.79620.54740.110*
H20B0.40980.69320.64130.110*
H20C0.31450.81780.66180.110*
C210.8461 (3)0.1228 (3)0.0840 (3)0.0745 (9)
H210.89290.07960.13990.089*
C220.9110 (4)0.1911 (3)0.0040 (3)0.0928 (11)
H221.00070.19600.00630.111*
C230.8464 (4)0.2547 (3)−0.0822 (3)0.0838 (10)
H230.89330.3008−0.13780.101*
C240.7175 (4)0.2495 (2)−0.0849 (2)0.0675 (8)
H240.67500.2926−0.14290.081*
C250.5086 (3)0.1752 (2)−0.0037 (2)0.0576 (7)
H250.46490.2187−0.06100.069*
C260.2985 (3)0.1032 (3)0.0763 (3)0.0709 (9)
H260.25330.14800.02010.085*
C270.2306 (4)0.0359 (3)0.1544 (3)0.0865 (10)
H270.13920.03470.15200.104*
C280.2958 (4)−0.0326 (3)0.2399 (3)0.0811 (10)
H280.2477−0.07900.29400.097*
C290.4271 (3)−0.0314 (3)0.2436 (2)0.0646 (8)
H290.4701−0.07850.30000.078*
C300.6386 (3)0.0447 (2)0.1664 (2)0.0496 (6)
C310.7097 (3)0.1152 (2)0.0851 (2)0.0527 (7)
C320.6432 (3)0.1807 (2)−0.0028 (2)0.0533 (7)
C330.5030 (3)0.0397 (2)0.1639 (2)0.0509 (7)
C340.4362 (3)0.1077 (2)0.0770 (2)0.0547 (7)
C350.7051 (3)−0.0211 (2)0.2548 (2)0.0573 (7)
C360.7636 (3)−0.0706 (2)0.3274 (2)0.0573 (7)
C370.8328 (3)−0.1305 (2)0.4196 (2)0.0559 (7)
O380.9388 (2)−0.07847 (15)0.41664 (16)0.0645 (6)
H380.9901−0.11790.45960.097*
C390.9208 (4)−0.2512 (2)0.4034 (3)0.0831 (11)
H39A0.9937−0.25160.33470.125*
H39B0.8560−0.29110.40260.125*
H39C0.9690−0.28810.46260.125*
C400.7207 (4)−0.1233 (3)0.5257 (3)0.0870 (11)
H40A0.6651−0.04490.53130.130*
H40B0.7689−0.15580.58530.130*
H40C0.6552−0.16440.52930.130*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.059 (2)0.082 (2)0.072 (2)−0.0160 (16)−0.0187 (16)−0.0192 (17)
C20.063 (2)0.114 (3)0.092 (3)−0.034 (2)−0.019 (2)−0.021 (2)
C30.052 (2)0.127 (3)0.080 (2)−0.026 (2)−0.0044 (18)−0.023 (2)
C40.0560 (19)0.102 (3)0.0614 (19)−0.0108 (17)−0.0111 (15)−0.0175 (17)
C50.066 (2)0.0655 (18)0.0487 (16)−0.0035 (15)−0.0127 (14)−0.0175 (14)
C60.091 (3)0.069 (2)0.0673 (19)−0.0273 (18)−0.0207 (19)−0.0149 (16)
C70.098 (3)0.081 (2)0.082 (2)−0.050 (2)−0.015 (2)−0.0135 (19)
C80.082 (2)0.074 (2)0.075 (2)−0.0402 (18)−0.0072 (18)−0.0058 (18)
C90.070 (2)0.0516 (17)0.0559 (17)−0.0165 (14)−0.0066 (15)−0.0040 (13)
C100.0499 (16)0.0473 (14)0.0472 (15)−0.0010 (12)−0.0148 (12)−0.0046 (12)
C110.0484 (17)0.0554 (16)0.0547 (16)−0.0031 (13)−0.0208 (13)−0.0065 (13)
C120.0517 (17)0.0650 (17)0.0479 (15)−0.0064 (13)−0.0155 (13)−0.0103 (13)
C130.0552 (16)0.0411 (13)0.0448 (14)−0.0081 (12)−0.0141 (12)0.0000 (12)
C140.0618 (18)0.0518 (16)0.0489 (16)−0.0089 (14)−0.0169 (14)−0.0038 (13)
C150.0551 (16)0.0451 (15)0.0520 (16)−0.0062 (12)−0.0163 (13)−0.0066 (14)
C160.0510 (16)0.0478 (15)0.0505 (15)−0.0094 (12)−0.0146 (13)−0.0081 (14)
C170.0502 (15)0.0398 (14)0.0510 (15)−0.0076 (11)−0.0191 (12)−0.0064 (12)
O180.0694 (13)0.0396 (10)0.0797 (13)−0.0064 (8)−0.0369 (10)−0.0116 (9)
C190.078 (2)0.079 (2)0.0551 (17)−0.0200 (17)−0.0087 (16)−0.0109 (16)
C200.071 (2)0.0691 (19)0.091 (2)−0.0075 (15)−0.0479 (18)−0.0183 (17)
C210.065 (2)0.085 (2)0.077 (2)−0.0254 (17)−0.0344 (17)0.0080 (18)
C220.071 (2)0.111 (3)0.101 (3)−0.044 (2)−0.033 (2)0.015 (2)
C230.080 (2)0.090 (2)0.078 (2)−0.038 (2)−0.0195 (19)0.0091 (19)
C240.076 (2)0.0655 (19)0.0596 (18)−0.0212 (16)−0.0258 (16)0.0034 (15)
C250.0621 (19)0.0519 (16)0.0553 (16)−0.0027 (14)−0.0327 (14)−0.0013 (13)
C260.0574 (19)0.076 (2)0.084 (2)−0.0115 (16)−0.0340 (17)−0.0128 (17)
C270.0499 (19)0.112 (3)0.100 (3)−0.0241 (19)−0.0234 (18)−0.015 (2)
C280.066 (2)0.105 (3)0.077 (2)−0.041 (2)−0.0083 (18)−0.0102 (19)
C290.070 (2)0.0683 (19)0.0545 (17)−0.0186 (15)−0.0169 (15)−0.0090 (14)
C300.0517 (16)0.0496 (15)0.0488 (15)−0.0073 (12)−0.0228 (12)−0.0087 (12)
C310.0480 (16)0.0565 (16)0.0526 (15)−0.0089 (13)−0.0198 (13)−0.0078 (13)
C320.0556 (17)0.0497 (15)0.0510 (15)−0.0077 (13)−0.0223 (13)−0.0028 (13)
C330.0509 (16)0.0525 (15)0.0464 (15)−0.0076 (12)−0.0162 (13)−0.0096 (12)
C340.0497 (16)0.0564 (16)0.0592 (16)−0.0061 (13)−0.0226 (13)−0.0148 (14)
C350.0625 (18)0.0565 (16)0.0545 (16)−0.0120 (13)−0.0278 (14)−0.0033 (13)
C360.0665 (18)0.0537 (16)0.0572 (16)−0.0168 (13)−0.0281 (14)−0.0043 (13)
C370.0611 (18)0.0561 (17)0.0563 (16)−0.0114 (13)−0.0347 (14)−0.0032 (13)
O380.0616 (12)0.0555 (11)0.0874 (14)−0.0091 (9)−0.0470 (11)−0.0072 (10)
C390.121 (3)0.0475 (17)0.088 (2)−0.0088 (17)−0.059 (2)−0.0052 (16)
C400.089 (2)0.103 (3)0.061 (2)−0.026 (2)−0.0264 (18)0.0053 (18)

Geometric parameters (Å, °)

C1—C21.348 (4)C21—C221.341 (4)
C1—C111.407 (4)C21—C311.397 (4)
C1—H10.9300C21—H210.9300
C2—C31.397 (5)C22—C231.388 (4)
C2—H20.9300C22—H220.9300
C3—C41.343 (5)C23—C241.325 (4)
C3—H30.9300C23—H230.9300
C4—C121.409 (4)C24—C321.404 (4)
C4—H40.9300C24—H240.9300
C5—C121.373 (4)C25—C321.375 (4)
C5—C141.378 (4)C25—C341.375 (4)
C5—H50.9300C25—H250.9300
C6—C71.334 (5)C26—C271.336 (5)
C6—C141.417 (4)C26—C341.401 (4)
C6—H60.9300C26—H260.9300
C7—C81.391 (5)C27—C281.399 (5)
C7—H70.9300C27—H270.9300
C8—C91.346 (4)C28—C291.333 (4)
C8—H80.9300C28—H280.9300
C9—C131.400 (4)C29—C331.419 (4)
C9—H90.9300C29—H290.9300
C10—C111.398 (4)C30—C331.390 (4)
C10—C131.407 (4)C30—C311.397 (4)
C10—C151.426 (4)C30—C351.427 (3)
C11—C121.416 (4)C31—C321.421 (3)
C13—C141.411 (4)C33—C341.420 (3)
C15—C161.185 (4)C35—C361.180 (3)
C16—C171.453 (4)C36—C371.466 (3)
C17—O181.425 (3)C37—O381.426 (3)
C17—C201.498 (4)C37—C401.479 (4)
C17—C191.500 (4)C37—C391.500 (4)
O18—H180.8200O38—H380.8200
C19—H19A0.9600C39—H39A0.9600
C19—H19B0.9600C39—H39B0.9600
C19—H19C0.9600C39—H39C0.9600
C20—H20A0.9600C40—H40A0.9600
C20—H20B0.9600C40—H40B0.9600
C20—H20C0.9600C40—H40C0.9600
C2—C1—C11121.2 (3)C22—C21—C31121.3 (3)
C2—C1—H1119.4C22—C21—H21119.4
C11—C1—H1119.4C31—C21—H21119.4
C1—C2—C3120.7 (3)C21—C22—C23121.0 (3)
C1—C2—H2119.7C21—C22—H22119.5
C3—C2—H2119.7C23—C22—H22119.5
C4—C3—C2119.9 (3)C24—C23—C22119.7 (3)
C4—C3—H3120.0C24—C23—H23120.1
C2—C3—H3120.0C22—C23—H23120.1
C3—C4—C12121.4 (3)C23—C24—C32122.0 (3)
C3—C4—H4119.3C23—C24—H24119.0
C12—C4—H4119.3C32—C24—H24119.0
C12—C5—C14121.9 (3)C32—C25—C34122.5 (2)
C12—C5—H5119.1C32—C25—H25118.8
C14—C5—H5119.1C34—C25—H25118.8
C7—C6—C14121.9 (3)C27—C26—C34121.5 (3)
C7—C6—H6119.1C27—C26—H26119.2
C14—C6—H6119.1C34—C26—H26119.2
C6—C7—C8119.9 (3)C26—C27—C28120.6 (3)
C6—C7—H7120.0C26—C27—H27119.7
C8—C7—H7120.0C28—C27—H27119.7
C9—C8—C7120.5 (3)C29—C28—C27119.9 (3)
C9—C8—H8119.7C29—C28—H28120.0
C7—C8—H8119.7C27—C28—H28120.0
C8—C9—C13121.4 (3)C28—C29—C33121.9 (3)
C8—C9—H9119.3C28—C29—H29119.1
C13—C9—H9119.3C33—C29—H29119.1
C11—C10—C13120.4 (2)C33—C30—C31121.1 (2)
C11—C10—C15119.5 (3)C33—C30—C35119.7 (3)
C13—C10—C15120.0 (2)C31—C30—C35119.2 (2)
C10—C11—C1122.4 (3)C30—C31—C21123.2 (2)
C10—C11—C12119.4 (3)C30—C31—C32119.1 (2)
C1—C11—C12118.2 (3)C21—C31—C32117.7 (3)
C5—C12—C4121.9 (3)C25—C32—C24122.7 (2)
C5—C12—C11119.5 (3)C25—C32—C31119.0 (3)
C4—C12—C11118.7 (3)C24—C32—C31118.3 (3)
C9—C13—C10122.5 (3)C30—C33—C29123.4 (2)
C9—C13—C14118.4 (3)C30—C33—C34119.1 (2)
C10—C13—C14119.0 (3)C29—C33—C34117.5 (3)
C5—C14—C13119.8 (3)C25—C34—C26122.3 (3)
C5—C14—C6122.4 (3)C25—C34—C33119.2 (2)
C13—C14—C6117.8 (3)C26—C34—C33118.6 (3)
C16—C15—C10176.9 (3)C36—C35—C30176.2 (3)
C15—C16—C17177.3 (3)C35—C36—C37178.5 (3)
O18—C17—C16108.37 (19)O38—C37—C36107.7 (2)
O18—C17—C20106.5 (2)O38—C37—C40110.3 (2)
C16—C17—C20109.6 (2)C36—C37—C40110.7 (2)
O18—C17—C19109.2 (2)O38—C37—C39105.0 (2)
C16—C17—C19110.9 (2)C36—C37—C39110.5 (2)
C20—C17—C19112.1 (2)C40—C37—C39112.4 (3)
C17—O18—H18109.5C37—O38—H38109.5
C17—C19—H19A109.5C37—C39—H39A109.5
C17—C19—H19B109.5C37—C39—H39B109.5
H19A—C19—H19B109.5H39A—C39—H39B109.5
C17—C19—H19C109.5C37—C39—H39C109.5
H19A—C19—H19C109.5H39A—C39—H39C109.5
H19B—C19—H19C109.5H39B—C39—H39C109.5
C17—C20—H20A109.5C37—C40—H40A109.5
C17—C20—H20B109.5C37—C40—H40B109.5
H20A—C20—H20B109.5H40A—C40—H40B109.5
C17—C20—H20C109.5C37—C40—H40C109.5
H20A—C20—H20C109.5H40A—C40—H40C109.5
H20B—C20—H20C109.5H40B—C40—H40C109.5
C11—C1—C2—C3−0.5 (5)C31—C21—C22—C23−1.6 (6)
C1—C2—C3—C40.0 (6)C21—C22—C23—C241.1 (6)
C2—C3—C4—C120.8 (5)C22—C23—C24—C32−0.2 (5)
C14—C6—C7—C8−1.0 (5)C34—C26—C27—C28−0.1 (5)
C6—C7—C8—C9−1.2 (5)C26—C27—C28—C29−0.2 (6)
C7—C8—C9—C132.5 (5)C27—C28—C29—C331.2 (5)
C13—C10—C11—C1177.9 (2)C33—C30—C31—C21−179.8 (3)
C15—C10—C11—C11.6 (4)C35—C30—C31—C211.7 (4)
C13—C10—C11—C12−0.6 (4)C33—C30—C31—C32−1.5 (4)
C15—C10—C11—C12−176.9 (2)C35—C30—C31—C32−179.9 (2)
C2—C1—C11—C10−178.2 (3)C22—C21—C31—C30179.6 (3)
C2—C1—C11—C120.3 (4)C22—C21—C31—C321.3 (5)
C14—C5—C12—C4−178.1 (3)C34—C25—C32—C24−179.9 (3)
C14—C5—C12—C110.6 (4)C34—C25—C32—C31−0.6 (4)
C3—C4—C12—C5177.6 (3)C23—C24—C32—C25179.3 (3)
C3—C4—C12—C11−1.0 (4)C23—C24—C32—C31−0.1 (5)
C10—C11—C12—C50.3 (4)C30—C31—C32—C251.8 (4)
C1—C11—C12—C5−178.2 (3)C21—C31—C32—C25−179.8 (3)
C10—C11—C12—C4179.0 (2)C30—C31—C32—C24−178.9 (2)
C1—C11—C12—C40.5 (4)C21—C31—C32—C24−0.4 (4)
C8—C9—C13—C10175.6 (3)C31—C30—C33—C29179.2 (3)
C8—C9—C13—C14−1.7 (4)C35—C30—C33—C29−2.4 (4)
C11—C10—C13—C9−177.3 (2)C31—C30—C33—C340.0 (4)
C15—C10—C13—C9−1.0 (4)C35—C30—C33—C34178.4 (2)
C11—C10—C13—C140.0 (3)C28—C29—C33—C30178.8 (3)
C15—C10—C13—C14176.3 (2)C28—C29—C33—C34−2.0 (4)
C12—C5—C14—C13−1.2 (4)C32—C25—C34—C26179.4 (3)
C12—C5—C14—C6177.5 (3)C32—C25—C34—C33−0.9 (4)
C9—C13—C14—C5178.3 (2)C27—C26—C34—C25179.0 (3)
C10—C13—C14—C50.9 (3)C27—C26—C34—C33−0.7 (4)
C9—C13—C14—C6−0.4 (3)C30—C33—C34—C251.2 (4)
C10—C13—C14—C6−177.8 (2)C29—C33—C34—C25−178.0 (3)
C7—C6—C14—C5−177.0 (3)C30—C33—C34—C26−179.1 (3)
C7—C6—C14—C131.7 (4)C29—C33—C34—C261.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O18—H18···O38i0.822.012.726 (3)145
O38—H38···O18ii0.822.062.766 (3)145

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y−1, z.

Table 2 C—H···π interactions (Å,°).

XHJH···JX···JX-I···J
C19H19CCg1iii2.873.810 (4)167
C20H20BCg2iii2.763.703 (4)168
C24H24Cg2iv2.643.472 (3)149
C25H25Cg1iv2.923.794 (3)157

Symmetry codes: (iii) 1-y, -y, 1-z; (iv) 1-x, 1-y, -z. Cg1 is the centroid of the C5/C10–C14 ring and Cg2 is the centroid of the C1–C4/C12/C11 ring.

Table 3 π-π interactions (Å,°).

CgICgJCg···CgDihedral angleInterplanar distanceOffset
34v3.794 (2)1.23.370 (2)1.336 (2)
43v3.794 (2)1.23.404 (2)1.464 (2)

Symmetry code: (v) 1-x, -y, -z. Cg3 is the centroid of the C25/30–C34 ring and Cg4 is the centroid of the C26-C29/C33/C34 ring. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2418).

References

  • Bunz, U. H. F. (2000). Chem. Rev.100, 1605–1644. [PubMed]
  • Cuffet, L., Hudson, R. D. A., Gallagher, J. F., Jennings, S., McAdam, C. J., Connelly, R. B. T., Manning, A. R., Robinson, B. H. & Simpson, J. (2005). Organometallics, 24, 2051–2060.
  • Dang, H., Levitus, M. & Garcia-Garibay, M. A. (2002). J. Am. Chem. Soc.124, 136–143. [PubMed]
  • De Silva, A. P., Dixon, I. M., Gunaratne, H. Q. N., Gunnlaugsson, T., Maxwell, P. R. S. M. & Rice, T. E. (1999). J. Am. Chem. Soc.121, 1393–1394.
  • Elangovan, A., Kao, K.-M., Yang, S.-W., Chen, Y.-L., Ho, T.-I. & Su, Y. O. (2005). J. Org. Chem.35, 4460–4469. [PubMed]
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Krasovitski, B. M. & Bolotin, B. M. (1988). Organic Luminescent Materials Weinheim: VCH.
  • O’Regan, B. & Grätzel, M. (1991). Nature (London), 353, 737–738.
  • Oxford Diffraction (1995–2003). KM4 Software. Version 1.171. Oxford Diffraction Poland, Wrocław, Poland.
  • Schumm, J. S., Pearson, D. L. & Tour, J. M. (1994). Angew. Chem. Int. Ed. Engl.33, 1360–1363.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wen, J. Y., Chang, H. K., Mi-Yun, J., Seung, K. L., Ming, J. P., Seung, J. J. & Bong, R. C. (2004). Chem. Mater.16, 2783–2789.
  • Xiao, Q., Ranasinghe, R. T., Tang, A. M. P. & Brown, T. (2007). Tetrahedron, 63, 3483–3490.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography