PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m308.
Published online 2008 January 9. doi:  10.1107/S160053680706833X
PMCID: PMC2960203

Diaqua­bis(2,2′-biimidazole)cobalt(II) dichloride

Abstract

There are independent cations and four chloride anions in the crystal structure of the title complex, [Co(C6H6N4)2(H2O)2]Cl2. In each cation, the CoII cation is coordinated by four N atoms from two biimidazole and two O atoms of two water mol­ecules; one Co atom is at a position of site symmetry m, the other at a position of site symmetry 2/m. All Cl ions and water mol­ecules are also located on the mirror plane. Each structural unit is connected through O—H(...)Cl and N—H(...)Cl inter­molecular hydrogen bonds, forming a three–dimensional supramolecular structure.

Related literature

For related literature, see: Barquin et al. (2003 [triangle]); Hirotoshi & Eisaku (2005 [triangle]); Tadokoro & Nakasuji (2000 [triangle]; Roth et al. (2000 [triangle]); Fieselmann et al. (1978 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m308-scheme1.jpg

Experimental

Crystal data

  • [Co(C6H6N4)2(H2O)2]Cl2
  • M r = 434.16
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m308-efi1.jpg
  • a = 22.037 (3) Å
  • b = 12.5321 (17) Å
  • c = 9.6421 (13) Å
  • β = 95.848 (2)°
  • V = 2649.0 (6) Å3
  • Z = 6
  • Mo Kα radiation
  • μ = 1.30 mm−1
  • T = 298 (2) K
  • 0.16 × 0.12 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.819, T max = 0.903
  • 8119 measured reflections
  • 3205 independent reflections
  • 2291 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.085
  • S = 1.04
  • 3205 reflections
  • 200 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Bruker, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680706833X/rk2059sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706833X/rk2059Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Professor Guang-Ning Zhang for his selfless help with our work.

supplementary crystallographic information

Comment

The imidazole coordinated complexes have various structures and extensive uses in the field of catalysis, materials and bioactivity (Barquin et al., 2003; Hirotoshi & Eisaku, 2005). The bis(2,2'–biimidazole)dihydrate cobalt dichloride was synthesized. The 2,2'–biimidazole is an interesting dicyclo–ligand of containing four N atoms: the two N atoms forming coordinate bonds and the other two - uncoordinated N atoms of biimidazole form N—H···Cl hydrogen bonds. This crystal structure are constructed by intermolecular hydrogen bonds (Tadokoro & Nakasuji, 2000; Roth et al., 2000).

The average bond distance Co—N is of 2.1563 (18) Å, the average bond angle N—Co—N is 101.50 (8)°, the average bond distance Co—O is 2.091 (2) Å. These parameters show, that the polihedron configuration is distorted octahedron (Fig. 1.). The biimidazole moieties and Cl atoms are linked by N—H···Cl and the water molecules and Cl atoms are linked by O—H···Cl hydrogen bonds, which shown on Fig. 2.

Experimental

The 2,2'–biimidazole was prepared according to (Fieselmann et al., 1978). 2,2'–Biimidazole (0.1 mmol) was mixed with 0.1 mmol CoCl2.6H2O in solution. After 10 min of stirring, the precipitate was filtered off, the resulting clear solution was allowed to stand at room temperature, after a few days yellow block–shaped crystals were obtained.

Refinement

H atoms of water molecules are located in a difference map and refined with distance restraints of O—H = 0.86 (1) Å.

Figures

Fig. 1.
The molecular structure of the title complex with the atom labeling scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as small spheres of arbitrary radius.
Fig. 2.
The packing diagram of title complex - viewed down the b axis. Dashed lines show hydrogen bonds.

Crystal data

[Co(C6H6N4)2(H2O)2]Cl2F000 = 1326
Mr = 434.16Dx = 1.633 Mg m3
Monoclinic, C2/mMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 2062 reflections
a = 22.037 (3) Åθ = 2.7–26.7º
b = 12.5321 (17) ŵ = 1.30 mm1
c = 9.6421 (13) ÅT = 298 (2) K
β = 95.848 (2)ºBlock, yellow
V = 2649.0 (6) Å30.16 × 0.12 × 0.08 mm
Z = 6

Data collection

Bruker SMART CCD area-detector diffractometer3205 independent reflections
Radiation source: fine–focus sealed tube2291 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.026
T = 298(2) Kθmax = 27.7º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 2003)h = −24→28
Tmin = 0.819, Tmax = 0.903k = −16→15
8119 measured reflectionsl = −11→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085  w = 1/[σ2(Fo2) + (0.0613P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3205 reflectionsΔρmax = 0.29 e Å3
200 parametersΔρmin = −0.24 e Å3
6 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All s.u.'s (except the s.u.'s in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.00000.00000.50000.03508 (16)
Co20.332770 (17)0.00000.08867 (4)0.03888 (14)
O1W0.09155 (10)0.00000.5815 (2)0.0493 (6)
H1A0.1231 (9)0.00000.536 (3)0.049 (10)*
H1B0.0984 (16)0.00000.6706 (11)0.071 (12)*
O2W0.42387 (11)0.00000.0446 (2)0.0836 (10)
H2B0.4517 (13)0.00000.114 (3)0.090 (14)*
H2C0.4321 (16)0.0000−0.0407 (16)0.074 (12)*
O3W0.24136 (10)0.00000.1289 (2)0.0544 (6)
H3B0.2314 (15)0.00000.2127 (16)0.065 (12)*
H3C0.2115 (12)0.00000.064 (3)0.083 (13)*
N10.01986 (7)0.10903 (15)0.33535 (16)0.0378 (4)
N20.35622 (8)0.10868 (16)0.25695 (16)0.0413 (4)
N30.30994 (8)0.10867 (16)−0.07959 (16)0.0420 (4)
N40.05671 (8)0.12463 (16)0.13273 (17)0.0458 (5)
H4B0.07190.10740.05710.055*
N50.38823 (8)0.12580 (16)0.47968 (18)0.0471 (5)
H5B0.40070.10930.56440.056*
N60.27788 (8)0.12601 (17)−0.30166 (17)0.0494 (5)
H6B0.26530.1097−0.38640.059*
C10.04173 (8)0.05762 (17)0.23184 (19)0.0363 (5)
C20.02053 (10)0.2150 (2)0.2986 (2)0.0446 (5)
H2A0.00730.27100.35110.054*
C30.04345 (11)0.2251 (2)0.1741 (2)0.0516 (6)
H3A0.04900.28830.12640.062*
C40.37410 (9)0.05749 (18)0.37374 (19)0.0379 (5)
C50.35969 (10)0.2148 (2)0.2901 (2)0.0509 (6)
H5A0.35020.27040.22770.061*
C60.37892 (11)0.2268 (2)0.4267 (2)0.0546 (6)
H6A0.38470.29070.47520.066*
C70.29209 (9)0.05720 (19)−0.19698 (19)0.0397 (5)
C80.30664 (10)0.2147 (2)−0.1125 (2)0.0526 (6)
H8A0.31640.2702−0.05010.063*
C90.28699 (10)0.2271 (2)−0.2492 (3)0.0564 (6)
H9A0.28090.2910−0.29760.068*
Cl10.12670 (4)0.00000.90521 (8)0.0602 (3)
Cl20.21127 (4)0.00000.43563 (7)0.0551 (2)
Cl30.04319 (4)0.50000.25997 (7)0.0501 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0382 (3)0.0427 (4)0.0243 (3)0.0000.0025 (2)0.000
Co20.0385 (2)0.0531 (3)0.0243 (2)0.000−0.00013 (16)0.000
O1W0.0386 (13)0.0814 (19)0.0279 (12)0.0000.0031 (10)0.000
O2W0.0386 (14)0.181 (3)0.0307 (14)0.0000.0011 (11)0.000
O3W0.0406 (13)0.093 (2)0.0289 (12)0.0000.0017 (10)0.000
N10.0417 (10)0.0429 (12)0.0285 (8)−0.0017 (8)0.0025 (7)−0.0009 (8)
N20.0435 (10)0.0495 (13)0.0293 (9)−0.0028 (9)−0.0034 (7)0.0027 (8)
N30.0447 (10)0.0503 (13)0.0304 (9)−0.0030 (9)0.0008 (7)0.0019 (8)
N40.0582 (12)0.0493 (13)0.0309 (9)−0.0039 (10)0.0096 (8)0.0030 (8)
N50.0574 (12)0.0506 (13)0.0307 (9)−0.0015 (10)−0.0080 (8)−0.0006 (9)
N60.0546 (12)0.0630 (15)0.0296 (9)−0.0007 (10)−0.0002 (8)0.0054 (9)
C10.0365 (11)0.0453 (13)0.0265 (10)−0.0024 (9)0.0003 (8)0.0024 (9)
C20.0488 (13)0.0448 (15)0.0397 (12)−0.0014 (11)0.0018 (9)−0.0037 (10)
C30.0629 (15)0.0451 (16)0.0468 (14)−0.0034 (13)0.0055 (11)0.0066 (11)
C40.0372 (11)0.0476 (13)0.0283 (10)−0.0022 (10)−0.0003 (8)−0.0015 (9)
C50.0551 (14)0.0509 (16)0.0445 (13)−0.0044 (12)−0.0059 (10)0.0076 (11)
C60.0637 (15)0.0473 (16)0.0504 (14)−0.0053 (13)−0.0066 (11)−0.0051 (12)
C70.0364 (11)0.0540 (14)0.0287 (10)0.0006 (10)0.0030 (8)0.0037 (9)
C80.0546 (14)0.0570 (18)0.0459 (13)−0.0091 (12)0.0040 (11)0.0014 (12)
C90.0639 (16)0.0559 (18)0.0489 (14)−0.0009 (13)0.0032 (12)0.0097 (12)
Cl10.0536 (5)0.0994 (8)0.0274 (4)0.0000.0029 (3)0.000
Cl20.0528 (5)0.0848 (7)0.0280 (4)0.0000.0056 (3)0.000
Cl30.0622 (5)0.0554 (6)0.0305 (4)0.000−0.0065 (3)0.000

Geometric parameters (Å, °)

Co1—O1W2.089 (2)N3—C81.366 (3)
Co1—O1Wi2.089 (2)N4—C11.338 (3)
Co1—N1ii2.1727 (17)N4—C31.362 (3)
Co1—N1i2.1727 (17)N4—H4B0.8600
Co1—N1iii2.1727 (17)N5—C41.345 (3)
Co1—N12.1727 (17)N5—C61.372 (3)
Co2—O3W2.090 (2)N5—H5B0.8600
Co2—O2W2.094 (2)N6—C71.340 (3)
Co2—N3iii2.1386 (18)N6—C91.371 (3)
Co2—N32.1386 (18)N6—H6B0.8600
Co2—N22.1410 (18)C1—C1iii1.444 (4)
Co2—N2iii2.1410 (18)C2—C31.355 (3)
O1W—H1A0.857 (10)C2—H2A0.9300
O1W—H1B0.857 (10)C3—H3A0.9300
O2W—H2B0.86 (3)C4—C4iii1.441 (4)
O2W—H2C0.860 (10)C5—C61.351 (3)
O3W—H3B0.859 (10)C5—H5A0.9300
O3W—H3C0.86 (3)C6—H6A0.9300
N1—C11.320 (2)C7—C7iii1.434 (5)
N1—C21.374 (3)C8—C91.354 (3)
N2—C41.321 (3)C8—H8A0.9300
N2—C51.368 (3)C9—H9A0.9300
N3—C71.327 (3)
O1W—Co1—O1Wi180.00 (4)C4—N2—C5105.57 (17)
O1W—Co1—N1ii89.08 (6)C4—N2—Co2111.42 (15)
O1Wi—Co1—N1ii90.92 (6)C5—N2—Co2143.01 (14)
O1W—Co1—N1i89.08 (6)C7—N3—C8105.70 (18)
O1Wi—Co1—N1i90.92 (6)C7—N3—Co2111.34 (16)
N1ii—Co1—N1i77.93 (9)C8—N3—Co2142.96 (15)
O1W—Co1—N1iii90.92 (6)C1—N4—C3107.16 (18)
O1Wi—Co1—N1iii89.08 (6)C1—N4—H4B126.4
N1ii—Co1—N1iii180.0C3—N4—H4B126.4
N1i—Co1—N1iii102.07 (9)C4—N5—C6106.87 (18)
O1W—Co1—N190.92 (6)C4—N5—H5B126.6
O1Wi—Co1—N189.08 (6)C6—N5—H5B126.6
N1ii—Co1—N1102.07 (9)C7—N6—C9107.62 (19)
N1i—Co1—N1180.0C7—N6—H6B126.2
N1iii—Co1—N177.93 (9)C9—N6—H6B126.2
O3W—Co2—O2W179.00 (9)N1—C1—N4111.7 (2)
O3W—Co2—N3iii89.09 (6)N1—C1—C1iii119.22 (12)
O2W—Co2—N3iii90.14 (7)N4—C1—C1iii128.86 (12)
O3W—Co2—N389.09 (6)C3—C2—N1109.5 (2)
O2W—Co2—N390.14 (7)C3—C2—H2A125.2
N3iii—Co2—N379.11 (10)N1—C2—H2A125.2
O3W—Co2—N291.27 (7)C2—C3—N4106.4 (2)
O2W—Co2—N289.50 (7)C2—C3—H3A126.8
N3iii—Co2—N2179.64 (7)N4—C3—H3A126.8
N3—Co2—N2100.94 (7)N2—C4—N5111.4 (2)
O3W—Co2—N2iii91.27 (7)N2—C4—C4iii119.06 (12)
O2W—Co2—N2iii89.50 (7)N5—C4—C4iii129.54 (12)
N3iii—Co2—N2iii100.94 (7)C6—C5—N2109.9 (2)
N3—Co2—N2iii179.64 (7)C6—C5—H5A125.0
N2—Co2—N2iii79.01 (10)N2—C5—H5A125.0
Co1—O1W—H1A128 (2)C5—C6—N5106.3 (2)
Co1—O1W—H1B116 (2)C5—C6—H6A126.9
H1A—O1W—H1B116 (3)N5—C6—H6A126.9
Co2—O2W—H2B118 (3)N3—C7—N6110.8 (2)
Co2—O2W—H2C120 (2)N3—C7—C7iii119.08 (13)
H2B—O2W—H2C123 (4)N6—C7—C7iii130.05 (13)
Co2—O3W—H3B121 (2)C9—C8—N3110.0 (2)
Co2—O3W—H3C123 (3)C9—C8—H8A125.0
H3B—O3W—H3C116 (3)N3—C8—H8A125.0
C1—N1—C2105.19 (17)C8—C9—N6105.8 (2)
C1—N1—Co1111.22 (14)C8—C9—H9A127.1
C2—N1—Co1143.52 (14)N6—C9—H9A127.1

Symmetry codes: (i) −x, −y, −z+1; (ii) −x, y, −z+1; (iii) x, −y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4B···Cl1iv0.862.403.213 (2)157
N5—H5B···Cl3v0.862.423.2091 (19)153
N6—H6B···Cl2iv0.862.423.210 (2)154
O3W—H3C···Cl1iv0.86 (3)2.29 (3)3.150 (2)175 (4)
O2W—H2B···Cl3vi0.86 (3)2.34 (3)3.180 (3)166 (4)
O2W—H2C···Cl3vii0.860 (10)2.236 (11)3.096 (3)178 (3)
O1W—H1A···Cl20.857 (10)2.259 (11)3.114 (2)175 (3)
O1W—H1B···Cl10.857 (10)2.285 (11)3.139 (2)174 (3)
O3W—H3B···Cl20.859 (10)2.239 (11)3.096 (2)177 (3)

Symmetry codes: (iv) x, y, z−1; (v) −x+1/2, −y+1/2, −z+1; (vi) x+1/2, y−1/2, z; (vii) −x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2059).

References

  • Barquin, M., Gonzalez Garmendia, M. J. & Bellido, V. (2003). Transition Met. Chem.28, 356–360.
  • Bruker (1997). SHELXTL Version 5.10. Bruker AXS inc., Madison, Wisconsin, USA.
  • Bruker (2001). SAINT and SMART Bruker AXS inc., Madison, Wisconsin, USA.
  • Fieselmann, B. F., Hendrickson, D. N. & Stucky, G. D. (1978). Inorg. Chem.17, 333–334.
  • Hirotoshi, M. & Eisaku, M. (2005). J. Theor. Cancer Chem.4, 2078–2084.
  • Roth, J. P., Lovell, S. & Mayer, J. M. (2000). J. Am. Chem. Soc.122, 5486–5498.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tadokoro, M. & Nakasuji, K. (2000). Coord. Chem. Rev.198, 205–218.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography