PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m424.
Published online 2008 January 25. doi:  10.1107/S1600536808002390
PMCID: PMC2960200

trans-Tetra­aqua­bis(nicotinamide-κN)cadmium(II) biphenyl-4,4′-disulfonate

Abstract

In the title compound, [Cd(C6H6N2O)2(H2O)4](C10H8O6S2), the CdII ion is located on a crystallographic inversion centre. An octa­hedral coordination geometry is defined by four water mol­ecules in one plane, and two trans N-atom donors of the nicotinamide ligands. The biphenyl-4,4′-disulfonate anion also lies on a crystallographic inversion centre. In the crystal structure, the complex cations are connected to the counter-anions via N—H(...)O and O—H(...)O hydrogen bonds, forming a three-dimensional network.

Related literature

For related literature, see: Beatty (2001 [triangle]); Christer et al. (2004 [triangle]); Holman et al. (2001 [triangle]); Lian & Li (2007a [triangle],b [triangle],c [triangle],d [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m424-scheme1.jpg

Experimental

Crystal data

  • [Cd(C6H6N2O)2(H2O)4](C10H8O6S2)
  • M r = 741.02
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m424-efi2.jpg
  • a = 14.742 (8) Å
  • b = 6.899 (4) Å
  • c = 15.292 (8) Å
  • β = 110.980 (9)°
  • V = 1452.2 (13) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.96 mm−1
  • T = 298 (2) K
  • 0.40 × 0.36 × 0.31 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.682, T max = 0.741
  • 7656 measured reflections
  • 2842 independent reflections
  • 2477 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.092
  • S = 1.07
  • 2842 reflections
  • 197 parameters
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −1.19 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808002390/fj2097sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808002390/fj2097Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the President’s Foundation of South China Agricultural University (Nos. 2006X013, 2007Y006 and 2007 K031) for financial support.

supplementary crystallographic information

Comment

The strong and directional nature of hydrogen bonds is exploited in the organized self-assembly of molecules in the solid state. Amides are commonly used functional groups in crystal engineering owing to the inherent coordination and hydrogen bonding donor/acceptor functionalities, and were used to construct extended frameworks sustained both by hydrogen bonds and coordination bonds (Beatty 2001; Christer et al., 2004). On the other hand, the sulfonate group is a suitable hydrogen-bond acceptor, and has been used to build extended frameworks. (Holman et al., 2001; Lian & Li, 2007a,b,c,d) In this paper, we report the synthesis and crystal structure of the title compound.

In the title compound, the metal centre, located on a crystallographic inversion centre, is in an octahedral geometry defined by four O atoms from four aqua ligands,respectively, and two trans-positioned N-atom donors of the nicotinamide ligands, as shown in Fig 1. The amide substituents are twisted away from the conformation in the pyridine ring plane by 37.6 (6)°. The biphenyl-4,4'-disulfonate anion also lies on a crystallographic inversion centre. The planes through phenyl ring in biphenyl-4,4'-disulfonate are twisted by 28.5 (7)°. In the crystal structure, all the amide groups are involved in amide-amide hydrogen bonded linkage in head to head fashion leading to infinite chains of the cations. These chains are linked by hydrogen bonds formed by the remaining N—H protons on the nicotinamide and sulfonate oxygen atoms, and coordinated water molecules and sulfonate oxygen atoms into three-dimensional networks as shown in Fig 2.

Experimental

Nicotinamide (0.050 g, 0.4 mmol) was added with constant stirring to an aqueous solution (10 mL) of Cd(CH3COO)2.2H2O (0.058 g, 0.2 mmol). The solution was then treated with disodium biphenyl-4,4'-disulfonate (0.070 g, 0.2 mmol). Colourless crystals of the title complex were collected by slow evaporation at room temperature after 7 days, (80% yield based on Cd).

Refinement

All the non-H atoms were refined with anisotropic thermal parameters.

H atoms attached to C or N atoms were placed in geometrically calculated positions (C—H = 0.93 Å, N–H=0.86 Å), and refined as riding with Uiso(H) = 1.2Ueq(C or N).

The O-bound H atoms were located in difference maps and refined as riding on the attached O atoms, with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
The molecular structure of (1), with the atom labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are represented as spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. Symmetry codes:(i) -x, y, ...
Fig. 2.
The three dimensional H-bonded network viewed from b axis direction. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cd(C6H6N2O)2(H2O)4](C10H8O6S2)F000 = 752
Mr = 741.02Dx = 1.695 Mg m3
Monoclinic, P2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 7656 reflections
a = 14.742 (8) Åθ = 12–18º
b = 6.899 (4) ŵ = 0.97 mm1
c = 15.292 (8) ÅT = 298 (2) K
β = 110.980 (9)ºBlock, colourless
V = 1452.2 (13) Å30.40 × 0.36 × 0.31 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer2842 independent reflections
Radiation source: fine-focus sealed tube2477 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
T = 298(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 3.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −18→12
Tmin = 0.682, Tmax = 0.741k = −8→7
7656 measured reflectionsl = −13→18

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030  w = 1/[σ2(Fo2) + (0.0578P)2 + 0.3728P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.58 e Å3
2842 reflectionsΔρmin = −1.19 e Å3
197 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.052 (2)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.50000.00000.50000.02772 (14)
S10.31842 (5)0.50038 (6)0.18505 (5)0.03230 (18)
O10.03394 (9)0.0836 (3)0.40310 (11)0.0485 (4)
O20.30985 (11)0.3259 (3)0.12698 (14)0.0544 (5)
O30.39387 (14)0.4851 (2)0.27876 (16)0.0462 (5)
O40.32299 (12)0.6768 (3)0.13379 (15)0.0582 (5)
O50.51977 (12)−0.2553 (3)0.41016 (16)0.0738 (7)
H5A0.4803−0.31930.36980.089*
H5B0.5698−0.28760.39760.089*
O60.51991 (12)0.2033 (3)0.38506 (14)0.0657 (6)
H6A0.48020.28890.35310.079*
H6B0.57010.25270.38170.079*
N10.34204 (14)−0.00860 (19)0.41343 (14)0.0296 (4)
N20.12317 (10)−0.1123 (3)0.52234 (10)0.0370 (4)
H2A0.0802−0.11480.54840.044*
H2B0.1766−0.17540.54690.044*
C10.27511 (17)−0.0072 (2)0.45320 (16)0.0279 (5)
H10.2932−0.00440.51800.033*
C20.18103 (17)−0.0100 (2)0.39791 (17)0.0277 (5)
C30.15424 (17)−0.0111 (2)0.29767 (16)0.0316 (5)
H30.0888−0.00660.26000.038*
C40.22217 (18)−0.0186 (3)0.25694 (16)0.0334 (5)
H40.2057−0.02490.19230.040*
C50.31554 (17)−0.0164 (2)0.31683 (16)0.0320 (5)
H50.3645−0.02020.29190.038*
C60.10639 (16)−0.0082 (2)0.44191 (16)0.0302 (5)
C70.21328 (17)0.5140 (2)0.20881 (19)0.0303 (5)
C80.21293 (18)0.4744 (3)0.30073 (19)0.0348 (5)
H80.27070.44550.34940.042*
C90.12884 (18)0.4791 (3)0.31652 (19)0.0349 (5)
H90.12710.45380.37560.042*
C100.04503 (16)0.5228 (2)0.24163 (18)0.0311 (5)
C110.04791 (14)0.5662 (3)0.15037 (15)0.0353 (4)
H11−0.00950.59760.10170.042*
C120.13142 (14)0.5621 (3)0.13407 (14)0.0342 (4)
H120.13380.59040.07540.041*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.01281 (17)0.03481 (19)0.03689 (19)−0.00051 (5)0.01054 (11)−0.00146 (6)
S10.0174 (3)0.0352 (3)0.0500 (4)−0.00152 (14)0.0190 (3)−0.00351 (17)
O10.0210 (7)0.0697 (11)0.0582 (9)0.0136 (8)0.0181 (6)0.0197 (9)
O20.0275 (8)0.0627 (11)0.0810 (11)−0.0076 (8)0.0290 (8)−0.0316 (10)
O30.0196 (9)0.0565 (11)0.0619 (12)−0.0001 (5)0.0136 (8)−0.0056 (6)
O40.0369 (9)0.0594 (11)0.0942 (13)0.0054 (8)0.0427 (9)0.0243 (10)
O50.0318 (8)0.0794 (13)0.1183 (16)−0.0128 (9)0.0366 (10)−0.0596 (13)
O60.0289 (8)0.0791 (13)0.0921 (13)0.0042 (8)0.0254 (8)0.0459 (11)
N10.0152 (9)0.0393 (10)0.0338 (9)−0.0004 (5)0.0083 (7)−0.0008 (6)
N20.0186 (7)0.0542 (11)0.0399 (9)0.0035 (7)0.0125 (6)0.0069 (8)
C10.0161 (11)0.0381 (12)0.0295 (10)−0.0004 (6)0.0082 (8)0.0001 (6)
C20.0189 (11)0.0288 (10)0.0353 (12)0.0000 (6)0.0095 (9)−0.0004 (6)
C30.0184 (11)0.0377 (12)0.0340 (12)0.0001 (6)0.0036 (9)0.0009 (7)
C40.0283 (12)0.0421 (12)0.0277 (10)−0.0005 (7)0.0075 (9)−0.0006 (7)
C50.0228 (11)0.0398 (11)0.0362 (11)0.0007 (7)0.0139 (9)−0.0008 (7)
C60.0154 (10)0.0387 (12)0.0352 (11)−0.0019 (6)0.0074 (8)−0.0013 (7)
C70.0183 (11)0.0288 (10)0.0499 (13)−0.0005 (6)0.0197 (10)−0.0014 (7)
C80.0212 (10)0.0388 (10)0.0483 (13)0.0048 (7)0.0172 (9)0.0074 (8)
C90.0254 (11)0.0388 (11)0.0469 (12)0.0054 (7)0.0209 (10)0.0098 (8)
C100.0200 (11)0.0287 (9)0.0508 (12)0.0002 (7)0.0202 (9)−0.0007 (8)
C110.0195 (9)0.0427 (11)0.0454 (11)0.0000 (9)0.0139 (8)−0.0004 (10)
C120.0237 (9)0.0419 (10)0.0412 (10)−0.0029 (9)0.0169 (8)−0.0012 (10)

Geometric parameters (Å, °)

Cd1—N1i2.230 (2)C1—C21.341 (3)
Cd1—N12.230 (2)C1—H10.9300
Cd1—O5i2.316 (2)C2—C31.439 (3)
Cd1—O52.316 (2)C2—C61.481 (3)
Cd1—O6i2.3479 (19)C3—C41.357 (4)
Cd1—O62.3479 (19)C3—H30.9300
S1—O41.463 (2)C4—C51.353 (3)
S1—O31.470 (2)C4—H40.9300
S1—O21.4742 (19)C5—H50.9300
S1—C71.717 (2)C7—C121.373 (3)
O1—C61.200 (3)C7—C81.434 (4)
O5—H5A0.8108C8—C91.346 (3)
O5—H5B0.8551C8—H80.9300
O6—H6A0.8517C9—C101.384 (4)
O6—H6B0.8328C9—H90.9300
N1—C11.332 (3)C10—C10ii1.439 (4)
N1—C51.387 (3)C10—C111.443 (3)
N2—C61.368 (3)C11—C121.341 (3)
N2—H2A0.8600C11—H110.9300
N2—H2B0.8600C12—H120.9300
N1i—Cd1—N1180.00 (6)C2—C1—H1120.7
N1i—Cd1—O5i87.37 (7)C1—C2—C3119.9 (2)
N1—Cd1—O5i92.63 (7)C1—C2—C6118.8 (2)
N1i—Cd1—O592.63 (6)C3—C2—C6121.2 (2)
N1—Cd1—O587.37 (7)C4—C3—C2121.5 (2)
O5i—Cd1—O5180.0C4—C3—H3119.2
N1i—Cd1—O6i87.44 (7)C2—C3—H3119.2
N1—Cd1—O6i92.56 (7)C5—C4—C3115.4 (2)
O5i—Cd1—O6i86.23 (10)C5—C4—H4122.3
O5—Cd1—O6i93.77 (10)C3—C4—H4122.3
N1i—Cd1—O692.56 (7)C4—C5—N1123.5 (2)
N1—Cd1—O687.44 (7)C4—C5—H5118.3
O5i—Cd1—O693.77 (10)N1—C5—H5118.3
O5—Cd1—O686.23 (10)O1—C6—N2124.3 (2)
O6i—Cd1—O6180.0O1—C6—C2117.0 (2)
O4—S1—O3114.71 (11)N2—C6—C2118.65 (18)
O4—S1—O2111.55 (16)C12—C7—C8123.5 (2)
O3—S1—O2113.62 (11)C12—C7—S1115.34 (19)
O4—S1—C7106.64 (9)C8—C7—S1121.17 (18)
O3—S1—C7102.88 (13)C9—C8—C7119.9 (2)
O2—S1—C7106.44 (9)C9—C8—H8120.1
Cd1—O5—H5A131.1C7—C8—H8120.1
Cd1—O5—H5B129.3C8—C9—C10117.6 (2)
H5A—O5—H5B97.4C8—C9—H9121.2
Cd1—O6—H6A126.9C10—C9—H9121.2
Cd1—O6—H6B130.0C9—C10—C10ii117.4 (3)
H6A—O6—H6B97.1C9—C10—C11121.3 (2)
C1—N1—C5120.96 (19)C10ii—C10—C11121.4 (3)
C1—N1—Cd1121.05 (16)C12—C11—C10121.50 (19)
C5—N1—Cd1117.99 (15)C12—C11—H11119.3
C6—N2—H2A120.0C10—C11—H11119.3
C6—N2—H2B120.0C11—C12—C7116.2 (2)
H2A—N2—H2B120.0C11—C12—H12121.9
N1—C1—C2118.7 (2)C7—C12—H12121.9
N1—C1—H1120.7

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···O3iii0.812.032.832 (3)171
O5—H5B···O4iv0.861.832.676 (2)172
O6—H6A···O30.851.932.777 (3)178
O6—H6B···O2v0.831.892.716 (3)171
N2—H2A···O1vi0.862.082.932 (2)171
N2—H2B···O2vii0.862.173.025 (3)172

Symmetry codes: (iii) x, y−1, z; (iv) −x+1, y−1, −z+1/2; (v) −x+1, y, −z+1/2; (vi) −x, −y, −z+1; (vii) x, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2097).

References

  • Beatty, A. M. (2001). CrystEngComm, 3, 1–13.
  • Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.06A). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Christer, B. A., John, P. & Jesús, V. M. (2004). CrystEngComm, 6, 413–418.
  • Holman, K. T., Pivovar, A. M., Swift, J. A. & Ward, M. D. (2001). Acc. Chem. Res.34, 107–118. [PubMed]
  • Lian, Z.-X. & Li, H.-H. (2007a). Acta Cryst. E63, m853–m855.
  • Lian, Z.-X. & Li, H.-H. (2007b). Acta Cryst. E63, m939–m941.
  • Lian, Z.-X. & Li, H.-H. (2007c). Acta Cryst. E63, m731–m733.
  • Lian, Z.-X. & Li, H.-H. (2007d). Acta Cryst. E63, m734–m736.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography