PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o356.
Published online 2008 January 4. doi:  10.1107/S1600536807067797
PMCID: PMC2960199

3-(2-Nitro­phen­oxy)phthalonitrile

Abstract

In the title compound, C14H7N3O3, the dihedral angle between the two arene units is 62.57 (12)°.

Related literature

For related literature, see: Atalay et al. (2003 [triangle], 2004 [triangle]); Cave et al. (1986 [triangle]); Köysal et al. (2004 [triangle]); Leznoff & Lever (1989–1996 [triangle]); McKeown (1998 [triangle]); Ocak Ískeleli (2007 [triangle]); Ocak et al. (2003 [triangle]), Sharman & van Lier(2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o356-scheme1.jpg

Experimental

Crystal data

  • C14H7N3O3
  • M r = 265.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o356-efi1.jpg
  • a = 8.0814 (17) Å
  • b = 7.9899 (12) Å
  • c = 19.068 (3) Å
  • β = 95.944 (15)°
  • V = 1224.6 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 295 (2) K
  • 0.4 × 0.4 × 0.1 mm

Data collection

  • Bruker P4 diffractometer
  • Absorption correction: none
  • 3018 measured reflections
  • 2155 independent reflections
  • 1252 reflections with I > 2σ(I)
  • R int = 0.092
  • 3 standard reflections every 97 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.145
  • S = 1.03
  • 2155 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: XSCANS (Bruker, 1997 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 1997 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067797/gd2031sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067797/gd2031Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the HBUST for financial support.

supplementary crystallographic information

Comment

Phthalonitriles are among the most important precursors of phthalocyanine materials (Leznoff, 1989–1996). Monophneoxyphthalonitriles have been used for preparing symmetrical phthalocyanines which have been applied in many areas, such as laser printing, photocopying, optical data storage, and catalysis (McKeown, 1998).

In the title compound, (I), (Fig. 1) the triple bond lengths between C and N, 1.136 (5) Å and 1.129 (5) Å, agree with literature values (Ocak et al., 2003). The geometry around the O atoms is in good agreement with the literature (Atalay et al., 2003, 2004; Köysal et al., 2004). The dihedral angle between the two intramolecular arene moieties is 62.57 (12)°.

Experimental

o-nitrophenol (1.39 g, 10.0 mmol) and 3-nitrophthalonitrile (1.73. g, 10.0 mmol) were dissolved in dry DMF (15 ml) with stirring under N2. Dry fine-powdered potassium carbonate (2.5 g, 18.1 mmol) was added over the course 1 h in equal portions every 10 min. The reaction mixture was stirred for 48 h at room temperature and poured into iced water (150 g). The product was filtered off and washed with(10% w/w) NaOH solution and water until the filtrate was neutral. Recrystallization from ethanol gave a white product (yield 1.72 g, 65%). Single crystals were obtained from absolute ethanol at room temperature via slow evaporation (m.p. 397–400 K). IR data (ν _max/cm-1): 3050(Ar—H), 1591(NO2), 2230(CN). NMR δ(H) 7.34–7.39(1H, m), 7.53–7.63(2H,m), 7.81–7.93(3H,m), 8.19–8.26(1H,m).

Refinement

H atoms were included as riding atoms in geometrically idealized positions with C—H distances 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of C14H7N3O3 with 35% probability ellipsoids, showing the atom numbering scheme.

Crystal data

C14H7N3O3F000 = 544
Mr = 265.23Dx = 1.439 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 51 reflections
a = 8.0814 (17) Åθ = 5.0–12.5º
b = 7.9899 (12) ŵ = 0.11 mm1
c = 19.068 (3) ÅT = 295 (2) K
β = 95.944 (15)ºPlate, colorless
V = 1224.6 (4) Å30.4 × 0.4 × 0.1 mm
Z = 4

Data collection

Bruker P4 diffractometerRint = 0.092
Radiation source: fine-focus sealed tubeθmax = 25.0º
Monochromator: graphiteθmin = 2.2º
T = 295(2) Kh = −1→9
ω scansk = −9→1
Absorption correction: nonel = −22→22
3018 measured reflections3 standard reflections
2155 independent reflections every 97 reflections
1252 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.146  w = 1/[σ2(Fo2) + (0.001P)2 + 1.2P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2155 reflectionsΔρmax = 0.20 e Å3
181 parametersΔρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.4115 (3)0.5913 (3)0.63769 (12)0.0683 (8)
O20.5975 (4)0.8586 (4)0.66974 (15)0.0806 (9)
O30.7869 (4)0.8009 (4)0.75304 (16)0.0932 (11)
N10.0726 (6)0.4464 (5)0.36401 (19)0.0967 (14)
N20.1821 (5)0.7972 (5)0.50408 (18)0.0822 (11)
N30.6493 (4)0.7811 (4)0.72224 (17)0.0609 (9)
C10.1511 (5)0.4108 (5)0.4142 (2)0.0651 (11)
C20.2279 (5)0.6648 (6)0.51586 (18)0.0566 (10)
C30.2487 (5)0.3691 (5)0.47972 (18)0.0534 (9)
C40.2840 (4)0.4955 (5)0.53013 (17)0.0492 (9)
C50.3749 (4)0.4568 (5)0.59366 (18)0.0524 (9)
C60.4322 (5)0.2954 (5)0.6072 (2)0.0623 (10)
H6A0.49520.27020.64950.075*
C70.3950 (5)0.1729 (5)0.5576 (2)0.0657 (11)
H7A0.43280.06440.56670.079*
C80.3024 (5)0.2082 (5)0.49420 (19)0.0620 (10)
H8A0.27650.12340.46150.074*
C90.4213 (4)0.5689 (5)0.71071 (17)0.0523 (9)
C100.5397 (4)0.6628 (4)0.75215 (18)0.0480 (9)
C110.5535 (5)0.6431 (5)0.82497 (18)0.0584 (10)
H11A0.63340.70360.85300.070*
C120.4516 (5)0.5362 (5)0.85555 (19)0.0603 (10)
H12A0.46280.52200.90420.072*
C140.3162 (5)0.4646 (5)0.7422 (2)0.0626 (11)
H14A0.23480.40430.71480.075*
C130.3319 (5)0.4496 (5)0.8141 (2)0.0643 (11)
H13A0.25990.37920.83520.077*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.090 (2)0.0637 (18)0.0462 (14)−0.0149 (15)−0.0149 (13)−0.0003 (13)
O20.090 (2)0.082 (2)0.0670 (18)−0.0169 (17)−0.0075 (16)0.0199 (16)
O30.0672 (19)0.119 (3)0.088 (2)−0.0375 (19)−0.0167 (17)0.0071 (19)
N10.128 (4)0.087 (3)0.065 (2)0.014 (3)−0.036 (2)−0.007 (2)
N20.113 (3)0.067 (3)0.063 (2)0.008 (2)−0.005 (2)0.0033 (19)
N30.064 (2)0.062 (2)0.0549 (19)−0.0103 (18)−0.0035 (17)−0.0013 (17)
C10.082 (3)0.056 (2)0.054 (2)−0.005 (2)−0.009 (2)−0.0072 (19)
C20.065 (3)0.062 (3)0.0408 (19)−0.002 (2)−0.0030 (18)−0.0008 (19)
C30.060 (2)0.056 (2)0.0429 (19)−0.005 (2)−0.0001 (17)0.0012 (18)
C40.049 (2)0.053 (2)0.0451 (19)−0.0043 (18)0.0015 (15)−0.0005 (17)
C50.056 (2)0.056 (2)0.0438 (19)−0.006 (2)0.0004 (17)−0.0018 (18)
C60.064 (2)0.068 (3)0.053 (2)0.001 (2)−0.0055 (19)0.006 (2)
C70.080 (3)0.057 (2)0.059 (2)0.007 (2)0.002 (2)0.006 (2)
C80.076 (3)0.057 (3)0.053 (2)0.000 (2)0.004 (2)−0.0059 (19)
C90.056 (2)0.053 (2)0.045 (2)0.0009 (19)−0.0076 (17)0.0009 (17)
C100.049 (2)0.043 (2)0.050 (2)0.0003 (17)−0.0030 (16)−0.0021 (16)
C110.062 (2)0.059 (2)0.051 (2)−0.002 (2)−0.0103 (19)−0.0059 (18)
C120.065 (3)0.068 (3)0.047 (2)−0.001 (2)0.0039 (19)−0.0027 (19)
C140.059 (2)0.065 (3)0.061 (2)−0.016 (2)−0.007 (2)0.001 (2)
C130.066 (3)0.065 (3)0.062 (2)−0.011 (2)0.010 (2)0.002 (2)

Geometric parameters (Å, °)

O1—C51.377 (4)C6—H6A0.9300
O1—C91.398 (4)C7—C81.383 (5)
O2—N31.214 (4)C7—H7A0.9300
O3—N31.213 (4)C8—H8A0.9300
N1—C11.129 (5)C9—C141.372 (5)
N2—C21.136 (5)C9—C101.395 (5)
N3—C101.452 (5)C10—C111.390 (5)
C1—C31.445 (5)C11—C121.359 (5)
C2—C41.443 (6)C11—H11A0.9300
C3—C81.376 (5)C12—C131.372 (5)
C3—C41.403 (5)C12—H12A0.9300
C4—C51.385 (5)C14—C131.369 (5)
C5—C61.385 (5)C14—H14A0.9300
C6—C71.372 (5)C13—H13A0.9300
C5—O1—C9119.6 (3)C3—C8—C7119.8 (3)
O3—N3—O2123.6 (4)C3—C8—H8A120.1
O3—N3—C10117.4 (3)C7—C8—H8A120.1
O2—N3—C10119.0 (3)C14—C9—C10119.9 (3)
N1—C1—C3178.2 (5)C14—C9—O1122.7 (3)
N2—C2—C4179.1 (4)C10—C9—O1117.4 (3)
C8—C3—C4119.8 (3)C11—C10—C9119.0 (4)
C8—C3—C1121.4 (3)C11—C10—N3118.5 (3)
C4—C3—C1118.7 (3)C9—C10—N3122.5 (3)
C5—C4—C3119.3 (3)C12—C11—C10120.6 (3)
C5—C4—C2120.1 (3)C12—C11—H11A119.7
C3—C4—C2120.5 (3)C10—C11—H11A119.7
O1—C5—C4114.8 (3)C11—C12—C13119.5 (4)
O1—C5—C6124.5 (3)C11—C12—H12A120.3
C4—C5—C6120.5 (3)C13—C12—H12A120.3
C7—C6—C5119.4 (3)C13—C14—C9119.6 (4)
C7—C6—H6A120.3C13—C14—H14A120.2
C5—C6—H6A120.3C9—C14—H14A120.2
C6—C7—C8121.1 (4)C14—C13—C12121.3 (4)
C6—C7—H7A119.4C14—C13—H13A119.3
C8—C7—H7A119.4C12—C13—H13A119.3

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GD2031).

References

  • Atalay, Ş., Ağar, A., Akdemir, N. & Ağar, E. (2003). Acta Cryst. E59, o1111–o1112.
  • Atalay, Ş., Çoruh, U., Akdemir, N. & Ağar, E. (2004). Acta Cryst. E60, o303–o305.
  • Bruker (1997). XSCANS and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cave, R. J., Siders, P. & Marcus, R. A. (1986). J. Phys. Chem.90, 1436–1439.
  • Köysal, Y., Işık, Ş., Akdemir, N., Ağar, E. & Kantar, C. (2004). Acta Cryst. E60, o930–o931.
  • Leznoff, C. C. & Lever, A. B. P. (1989–1996). Phthalocyanines: Properties and Applications , Vols. 1-4. Weinheim/New York: VHC Publishers Inc.
  • McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function Cambridge University Press.
  • Ocak, N., Ağar, A., Akdemir, N., Ağar, E., García-Granda, S. & Erdönmez, A. (2003). Acta Cryst. E59, o1000–o1001.
  • Ocak Ískeleli, N. (2007). Acta Cryst. E63, o997–o998.
  • Sharman, W. M. & van Lier, J. E. (2003). The Porphyrin Handbook, Vol. 15, edited by K. M. Kadish, K. M. Smith & G. Guilard, pp. 1–60. New York: Academic Press.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography