PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m317–m318.
Published online 2008 January 9. doi:  10.1107/S1600536807068614
PMCID: PMC2960179

This article has been retractedRetraction in: Acta Crystallogr Sect E Struct Rep Online. 2010 January 01; 66(Pt 1): e11    See also: PMC Retraction Policy

catena-Poly[[(1,10-phenanthroline-κ2 N,N′)praseodymium(III)]-di-μ-phenoxy­acetato-κ4 O:O′-[(1,10-phenanthroline-κ2 N,N′)praseodymium(III)]-di-μ-phenoxy­acetato-κ4 O:O′-di-μ-phenoxy­acetato-κ3 O,O′:O3 O:O,O′]

Abstract

The title complex, [Pr2(C8H7O3)6(C12H8N2)2]n, which has an inversion centre midway between the two PrIII atoms of the structural unit, forms a one-dimensional polymer bridged alternately by either two bidentate, or two bidentate and two terdentate, phenoxy­acetate carboxyl­ate groups. Each PrIII atom is thus nine-coordinated by two N atoms of a 1,10-phenanthroline ligand and seven O atoms from six phenoxy­acetate ligands. The coordination geometry at the PrIII atom is distorted tricapped trigonal prismatic. One phenyl ring is disordered over two positions; the site occupancy factors are ca 0.6 and 0.4.

Related literature

For related literature, see: Allen et al. (1987 [triangle]); Daiguebonne et al. (2000 [triangle]); Farrugia et al. (2000 [triangle]); Kay et al. (1972 [triangle]); Ma et al. (1999 [triangle]); Mao et al. (1998 [triangle]); Starynowicz (1991 [triangle], 1993 [triangle]); Tsukube & Shinoda (2002 [triangle]); Zhang et al. (2005 [triangle]); Zeng et al. (2000 [triangle]); Zhong et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m317-scheme1.jpg

Experimental

Crystal data

  • [Pr2(C8H7O3)6(C12H8N2)2]
  • M r = 1549.04
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m317-efi1.jpg
  • a = 20.204 (4) Å
  • b = 8.499 (4) Å
  • c = 20.799 (3) Å
  • β = 107.198 (6)°
  • V = 3411.8 (17) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.49 mm−1
  • T = 273 (2) K
  • 0.33 × 0.12 × 0.08 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.642, T max = 0.890
  • 27763 measured reflections
  • 7712 independent reflections
  • 5037 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.097
  • S = 0.90
  • 7712 reflections
  • 452 parameters
  • 144 restraints
  • H-atom parameters constrained
  • Δρmax = 1.03 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Siemens, 1996 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068614/rt2009sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068614/rt2009Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Science and Technology Bureau of Jian, Jiangxi Province, China (grant No. 20052817).

supplementary crystallographic information

Comment

In recent years, there has been great interest in the synthesis of metal organic frameworks (MOFs) with organic ligands and rare earth metals because of their novel structures, fascinating properties and important roles in special materials with potential optical, electronic, magnetic and biological applications (Daiguebonne et al., 2000; Farrugia et al., 2000; Tsukube & Shinoda, 2002; Zhang et al., 2005). These compounds are usually prepared by the reaction of rare-earth metal ions with bi- or multidentate ligands (Starynowicz, 1991, 1993; Kay et al., 1972; Ma et al., 1999; Zeng et al., 2000; Mao et al., 1998). We report herein the crystal structure of the title compound, (I).

In the molecular unit of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The PrIII metal centres are bridged alternatively either by two bidentate, or by two terdentate and two bidentate, phenoxyacetato carboxylate groups with an inversion centre between them. Each Pr atom is nine-coordinated by two N atoms of the 1,10-phenanthroline ligand and seven O atoms from six phenoxyacetate ligands (Table 1), and the coordination geometry at the Pr atom forms a tricapped trigonal prism. The Pr—O bond lengths are in the range 2.409 (3) to 2.817 (3) Å. The Pr—N bond lengths are in the range 2.720 (3) to 2.753 (3) Å. Hydrogen bonds between C—H groups and O atoms of neighbouring phenoxyacetate ligands, with C···O distances of 3.063 (5) to 3.353 (5) Å, generate a layered hydrogen-bonded network (Table 2).

Experimental

The title compound was synthesized using the hydrothermal method in a 23 ml Teflon-lined Parr bomb, which was then sealed. Praseodymium(III) chloride hexahydrate (71.1 mg, 0.2 mmol), 1,10-phenanthroline (39.6 mg, 0.2 mmol), phenoxyacetic acid (91.3 mg, 0.6 mmol), sodium hydroxide (24 mg, 0.6 mmol) and distilled water (4 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure for 7 d at 413 K and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colorless solution was decanted from small green crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature (yield: 72.7 mg, 36%).

Refinement

H atoms were positioned geometrically, with C—H = 0.93–0.97 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The phenyl ring defined by C23–C28 shows and in-plane disorder of ca 0.4:0.6, and the two phenyl fragments (A and B) were refined as restrained rigid groups, allowing the population to vary. The hydrogen atoms on the disordered phenyl ring were not placed, and as a result of the disorder, slightly larger thermal parameters were observed on the periphery of the molecule.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level [for symmetry codes, see Tabel 1]. All H atoms have been omitted for clarity.
Fig. 2.
View along the b axis showing one dimensional polymeric structure, linked by H-bonding.

Crystal data

[Pr2(C8H7O3)6(C12H8N2)2]F(000) = 1560
Mr = 1549.04Dx = 1.508 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9075 reflections
a = 20.204 (4) Åθ = 2.4–26.9°
b = 8.499 (4) ŵ = 1.49 mm1
c = 20.799 (3) ÅT = 273 K
β = 107.198 (6)°Needle, green
V = 3411.8 (17) Å30.33 × 0.12 × 0.08 mm
Z = 2

Data collection

Bruker APEXII area-detector diffractometer7712 independent reflections
Radiation source: fine-focus sealed tube5037 reflections with I > 2σ(I)
graphiteRint = 0.043
[var phi] and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −26→25
Tmin = 0.642, Tmax = 0.891k = −10→11
27763 measured reflectionsl = −26→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.90w = 1/[σ2(Fo2) + (0.0573P)2 + 0.9707P] where P = (Fo2 + 2Fc2)/3
7712 reflections(Δ/σ)max = 0.002
452 parametersΔρmax = 1.04 e Å3
144 restraintsΔρmin = −0.64 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Pr10.931206 (10)0.19065 (2)0.964285 (9)0.03966 (8)
O10.97069 (13)0.0604 (3)0.87489 (11)0.0491 (6)
O21.06691 (13)−0.0826 (3)0.92159 (12)0.0516 (6)
O31.11827 (15)−0.0166 (4)0.82183 (14)0.0691 (8)
O40.84633 (12)−0.0358 (3)0.91883 (12)0.0466 (6)
O50.94657 (13)−0.1383 (3)0.97718 (12)0.0518 (7)
O60.78462 (16)−0.3257 (3)0.89785 (16)0.0648 (8)
O70.94001 (13)0.4205 (3)1.03407 (12)0.0500 (6)
O81.00785 (15)0.6123 (3)1.09093 (12)0.0590 (7)
O90.98717 (16)0.5273 (3)1.20640 (13)0.0645 (8)
N10.79697 (17)0.2344 (4)0.96683 (16)0.0506 (8)
N20.83406 (18)0.3071 (3)0.85447 (15)0.0498 (8)
C10.7781 (2)0.1926 (5)1.0199 (2)0.0643 (12)
H10.81260.17071.05980.077*
C20.7089 (3)0.1797 (6)1.0195 (3)0.0840 (16)
H20.69780.14951.05800.101*
C30.6575 (3)0.2127 (7)0.9606 (4)0.0962 (19)
H30.61120.20430.95910.115*
C40.6746 (2)0.2581 (7)0.9041 (3)0.0772 (14)
C50.7458 (2)0.2679 (5)0.9084 (2)0.0541 (10)
C60.6231 (3)0.2967 (8)0.8409 (4)0.111 (2)
H60.57630.28790.83720.133*
C70.6424 (3)0.3448 (8)0.7880 (3)0.106 (2)
H70.60850.37270.74870.127*
C80.7134 (3)0.3547 (6)0.7899 (2)0.0727 (14)
C90.7660 (2)0.3102 (4)0.8506 (2)0.0536 (10)
C100.7358 (3)0.4037 (6)0.7367 (2)0.0878 (17)
H100.70360.43920.69750.105*
C110.8031 (3)0.4012 (6)0.7405 (2)0.0819 (15)
H110.81750.43310.70400.098*
C120.8524 (3)0.3492 (5)0.8009 (2)0.0644 (12)
H120.89890.34480.80280.077*
C131.0286 (2)0.0032 (4)0.87703 (17)0.0442 (9)
C141.0524 (2)0.0512 (5)0.81759 (19)0.0564 (10)
H14A1.01860.01700.77630.068*
H14B1.05570.16490.81630.068*
C151.1460 (2)0.0142 (6)0.7704 (2)0.0646 (12)
C161.2081 (3)−0.0565 (7)0.7766 (3)0.0808 (14)
H161.2289−0.11790.81410.097*
C171.2403 (3)−0.0368 (7)0.7268 (3)0.0955 (18)
H171.2827−0.08500.73090.115*
C181.2101 (4)0.0526 (7)0.6722 (3)0.104 (2)
H181.23180.06500.63880.124*
C191.1491 (4)0.1238 (8)0.6659 (3)0.109 (2)
H191.12910.18560.62820.130*
C201.1148 (3)0.1059 (7)0.7157 (3)0.0847 (16)
H201.07250.15480.71140.102*
C210.8840 (2)−0.1509 (5)0.93913 (18)0.0457 (9)
C220.8576 (2)−0.3140 (5)0.9189 (2)0.0573 (10)
H22A0.8750−0.34900.88250.069*
H22B0.8760−0.38420.95670.069*
C23A0.75531 (19)−0.3041 (3)0.9521 (2)0.079 (6)0.384 (14)
C24A0.79664 (17)−0.2697 (2)1.0169 (2)0.076 (5)0.384 (14)
C25A0.7671 (2)−0.2571 (3)1.0691 (2)0.101 (6)0.384 (14)
C26A0.6962 (3)−0.2790 (4)1.0566 (3)0.110 (6)0.384 (14)
C27A0.65490 (19)−0.3133 (3)0.9918 (3)0.126 (7)0.384 (14)
C28A0.68444 (18)−0.3259 (3)0.9396 (2)0.120 (6)0.384 (14)
C23B0.7508 (2)−0.3175 (3)0.9425 (2)0.077 (4)0.616 (14)
C24B0.77565 (17)−0.2805 (2)1.0105 (2)0.112 (4)0.616 (14)
C25B0.7302 (2)−0.2706 (3)1.0492 (2)0.120 (4)0.616 (14)
C26B0.6599 (2)−0.2977 (4)1.0198 (3)0.133 (5)0.616 (14)
C27B0.63499 (18)−0.3347 (3)0.9518 (3)0.115 (4)0.616 (14)
C28B0.6804 (2)−0.3446 (3)0.9132 (2)0.086 (3)0.616 (14)
C290.96861 (15)0.4991 (3)1.08649 (13)0.0453 (9)
C300.94968 (19)0.4431 (3)1.14756 (13)0.0583 (11)
H30A0.90040.45741.14020.070*
H30B0.95980.33161.15420.070*
C310.9746 (2)0.4891 (5)1.26544 (19)0.0558 (10)
C321.0143 (3)0.5695 (6)1.3220 (2)0.0749 (13)
H321.04740.64181.31810.090*
C331.0046 (3)0.5419 (7)1.3836 (2)0.0929 (17)
H331.03060.59691.42120.111*
C340.9565 (3)0.4332 (9)1.3897 (3)0.108 (2)
H340.94920.41531.43120.130*
C350.9196 (3)0.3522 (8)1.3342 (3)0.108 (2)
H350.88790.27651.33860.129*
C360.9279 (2)0.3792 (7)1.2721 (2)0.0743 (14)
H360.90190.32301.23480.089*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pr10.04654 (13)0.03356 (12)0.03391 (11)−0.00161 (9)0.00420 (8)0.00057 (9)
O10.0588 (16)0.0479 (16)0.0398 (14)0.0067 (13)0.0132 (12)0.0022 (12)
O20.0634 (16)0.0494 (16)0.0428 (14)0.0069 (14)0.0167 (12)0.0097 (12)
O30.0709 (19)0.085 (2)0.0591 (18)0.0162 (17)0.0304 (15)0.0209 (16)
O40.0480 (14)0.0350 (15)0.0484 (14)0.0008 (12)0.0015 (11)−0.0027 (11)
O50.0480 (15)0.0524 (16)0.0462 (15)−0.0032 (12)0.0003 (12)0.0071 (12)
O60.0616 (19)0.0474 (18)0.073 (2)−0.0128 (14)0.0006 (15)−0.0080 (15)
O70.0718 (17)0.0341 (14)0.0424 (14)−0.0063 (13)0.0142 (12)−0.0043 (11)
O80.087 (2)0.0515 (18)0.0383 (14)−0.0250 (16)0.0177 (13)−0.0031 (12)
O90.091 (2)0.0617 (19)0.0416 (15)−0.0270 (16)0.0210 (14)−0.0058 (13)
N10.0508 (19)0.0435 (19)0.0498 (19)0.0053 (15)0.0029 (15)−0.0074 (15)
N20.065 (2)0.0375 (18)0.0373 (17)0.0016 (16)−0.0006 (14)0.0005 (14)
C10.059 (3)0.075 (3)0.058 (3)0.008 (2)0.015 (2)−0.002 (2)
C20.064 (3)0.111 (5)0.084 (4)0.003 (3)0.032 (3)−0.011 (3)
C30.049 (3)0.109 (5)0.128 (5)−0.002 (3)0.022 (3)−0.018 (4)
C40.053 (3)0.088 (4)0.076 (4)0.007 (3)−0.004 (2)−0.016 (3)
C50.052 (2)0.039 (2)0.061 (3)0.0057 (18)0.0014 (19)−0.0115 (18)
C60.060 (3)0.131 (6)0.114 (5)0.018 (3)−0.017 (3)−0.027 (5)
C70.080 (4)0.113 (5)0.087 (4)0.039 (4)−0.034 (3)−0.019 (4)
C80.077 (3)0.061 (3)0.056 (3)0.018 (2)−0.017 (2)−0.011 (2)
C90.060 (2)0.035 (2)0.048 (2)0.0049 (19)−0.0111 (18)−0.0053 (17)
C100.117 (5)0.071 (4)0.047 (3)0.018 (3)−0.020 (3)0.000 (2)
C110.122 (5)0.070 (4)0.040 (2)−0.001 (3)0.003 (3)0.009 (2)
C120.084 (3)0.051 (3)0.048 (2)−0.003 (2)0.004 (2)0.0067 (19)
C130.058 (2)0.035 (2)0.038 (2)−0.0060 (18)0.0116 (17)−0.0025 (15)
C140.066 (3)0.056 (3)0.049 (2)0.006 (2)0.0199 (19)0.0123 (19)
C150.075 (3)0.067 (3)0.061 (3)−0.006 (2)0.034 (2)0.002 (2)
C160.079 (3)0.098 (4)0.075 (3)0.001 (3)0.038 (3)0.002 (3)
C170.092 (4)0.100 (5)0.113 (5)−0.002 (4)0.060 (4)−0.006 (4)
C180.135 (5)0.087 (4)0.124 (5)−0.015 (4)0.092 (5)−0.007 (4)
C190.159 (6)0.101 (5)0.092 (4)0.008 (5)0.077 (4)0.026 (4)
C200.103 (4)0.088 (4)0.080 (3)0.010 (3)0.053 (3)0.024 (3)
C210.051 (2)0.050 (2)0.0325 (18)−0.0054 (18)0.0066 (16)−0.0032 (16)
C220.062 (3)0.045 (2)0.058 (3)0.002 (2)0.008 (2)−0.0060 (19)
C23A0.090 (12)0.047 (10)0.126 (11)−0.009 (9)0.071 (9)0.027 (9)
C24A0.116 (10)0.055 (9)0.086 (9)−0.011 (7)0.073 (8)0.000 (7)
C25A0.118 (11)0.079 (10)0.127 (11)0.017 (8)0.069 (9)0.021 (9)
C26A0.109 (12)0.111 (11)0.140 (12)0.047 (9)0.082 (10)0.052 (9)
C27A0.103 (11)0.138 (13)0.168 (14)0.041 (10)0.087 (9)0.065 (11)
C28A0.102 (12)0.113 (12)0.167 (13)0.032 (10)0.074 (10)0.046 (10)
C23B0.083 (8)0.033 (6)0.107 (8)0.002 (5)0.016 (6)−0.005 (6)
C24B0.145 (9)0.086 (8)0.109 (9)−0.021 (7)0.044 (7)0.012 (7)
C25B0.144 (10)0.120 (9)0.117 (9)0.000 (8)0.070 (8)0.028 (7)
C26B0.145 (10)0.128 (10)0.140 (10)0.041 (9)0.063 (9)0.023 (8)
C27B0.123 (8)0.086 (7)0.141 (9)0.033 (6)0.047 (7)0.016 (7)
C28B0.079 (6)0.056 (6)0.133 (8)0.014 (5)0.046 (5)0.012 (5)
C290.061 (2)0.033 (2)0.040 (2)−0.0035 (18)0.0133 (17)0.0007 (16)
C300.077 (3)0.055 (3)0.044 (2)−0.020 (2)0.0193 (19)−0.0057 (19)
C310.072 (3)0.056 (3)0.038 (2)−0.003 (2)0.0146 (19)0.0016 (18)
C320.092 (3)0.077 (3)0.054 (3)−0.019 (3)0.017 (2)−0.009 (2)
C330.122 (5)0.108 (5)0.042 (3)−0.021 (4)0.014 (3)−0.009 (3)
C340.133 (5)0.146 (6)0.055 (3)−0.031 (5)0.043 (3)0.009 (4)
C350.124 (5)0.141 (6)0.066 (4)−0.059 (4)0.041 (3)−0.003 (4)
C360.081 (3)0.091 (4)0.053 (3)−0.033 (3)0.023 (2)−0.003 (2)

Geometric parameters (Å, °)

Pr1—O12.489 (2)C15—C201.370 (6)
Pr1—O2i2.535 (2)C16—C171.387 (7)
Pr1—O42.565 (2)C16—H160.9300
Pr1—O52.817 (3)C17—C181.352 (8)
Pr1—O5i2.449 (2)C17—H170.9300
Pr1—O72.409 (3)C18—C191.345 (8)
Pr1—O8ii2.545 (3)C18—H180.9300
Pr1—N12.753 (3)C19—C201.415 (7)
Pr1—N22.720 (3)C19—H190.9300
O1—C131.255 (4)C20—H200.9300
O2—C131.252 (4)C21—C221.500 (5)
O2—Pr1i2.535 (2)C22—H22A0.9700
O3—C151.372 (5)C22—H22B0.9700
O3—C141.429 (5)C23A—C24B1.1792
O4—C211.235 (4)C23A—C24A1.3900
O5—C211.282 (4)C23A—C28A1.3900
O5—Pr1i2.449 (2)C23A—C28B1.5294
O6—C23B1.309 (5)C24A—C25A1.3900
O6—C221.412 (5)C24A—C23B1.6025
O6—C23A1.433 (5)C24A—C25B1.6693
O7—C291.263 (3)C25A—C25B0.7471
O8—C291.233 (3)C25A—C24B1.2955
O8—Pr1ii2.545 (3)C25A—C26A1.3900
O9—C311.364 (5)C26A—C25B0.7502
O9—C301.427 (4)C26A—C26B0.9047
N1—C11.319 (5)C26A—C27A1.3900
N1—C51.372 (5)C27A—C26B0.5756
N2—C121.323 (5)C27A—C27B0.8310
N2—C91.355 (5)C27A—C28A1.3900
C1—C21.401 (6)C27A—C25B1.6721
C1—H10.9300C28A—C28B0.5549
C2—C31.381 (8)C28A—C27B1.1036
C2—H20.9300C28A—C23B1.3252
C3—C41.373 (8)C23B—C24B1.3900
C3—H30.9300C23B—C28B1.3900
C4—C51.418 (6)C24B—C25B1.3900
C4—C61.452 (8)C25B—C26B1.3900
C5—C91.424 (6)C26B—C27B1.3900
C6—C71.335 (9)C27B—C28B1.3900
C6—H60.9300C29—C301.5078
C7—C81.426 (8)C30—H30A0.9700
C7—H70.9300C30—H30B0.9700
C8—C101.377 (7)C31—C361.364 (6)
C8—C91.440 (5)C31—C321.391 (6)
C10—C111.340 (7)C32—C331.372 (6)
C10—H100.9300C32—H320.9300
C11—C121.423 (6)C33—C341.374 (8)
C11—H110.9300C33—H330.9300
C12—H120.9300C34—C351.361 (8)
C13—C141.509 (5)C34—H340.9300
C14—H14A0.9700C35—C361.371 (6)
C14—H14B0.9700C35—H350.9300
C15—C161.363 (6)C36—H360.9300
O1—Pr1—O473.62 (8)C21—C22—H22A108.8
O1—Pr1—O565.11 (8)O6—C22—H22B108.8
O1—Pr1—O7145.88 (9)C21—C22—H22B108.8
O4—Pr1—O548.17 (8)H22A—C22—H22B107.7
O4—Pr1—O7138.84 (9)C24B—C23A—C28A104.0
O5—Pr1—O7139.57 (8)C24A—C23A—C28A120.0
O1—Pr1—N1127.55 (9)C24B—C23A—O6137.2 (2)
O4—Pr1—N163.48 (9)C24A—C23A—O6121.4 (2)
O5—Pr1—N1102.34 (9)C28A—C23A—O6118.6 (2)
O7—Pr1—N177.09 (9)C24B—C23A—C28B125.0
O1—Pr1—N281.11 (9)C24A—C23A—C28B141.0
O4—Pr1—N274.08 (9)O6—C23A—C28B97.4 (2)
O5—Pr1—N2118.22 (8)C23A—C24A—C25A120.0
O7—Pr1—N296.74 (9)C25A—C24A—C23B121.0
N1—Pr1—N259.78 (10)C23A—C24A—C25B93.7
O7—Pr1—O5i87.92 (9)C23B—C24A—C25B94.7
O5i—Pr1—O177.99 (9)C25B—C25A—C24B81.0
O7—Pr1—O2i75.61 (8)C24B—C25A—C26A102.7
O5i—Pr1—O2i74.63 (8)C25B—C25A—C24A98.2
O1—Pr1—O2i128.25 (9)C26A—C25A—C24A120.0
O7—Pr1—O8ii77.23 (9)C25B—C26A—C26B113.9
O5i—Pr1—O8ii78.03 (9)C26B—C26A—C25A135.7
O1—Pr1—O8ii69.56 (9)C25B—C26A—C27A98.3
O2i—Pr1—O8ii141.78 (8)C25A—C26A—C27A120.0
O5i—Pr1—O4120.85 (9)C26B—C27A—C27B162.1
O2i—Pr1—O484.07 (8)C26B—C27A—C28A145.1
O8ii—Pr1—O4133.42 (8)C27B—C27A—C28A52.6
O5i—Pr1—N2148.71 (10)C27B—C27A—C26A172.5
O2i—Pr1—N2136.51 (10)C28A—C27A—C26A120.0
O8ii—Pr1—N272.96 (10)C26B—C27A—C25B51.6
O5i—Pr1—N1150.33 (9)C27B—C27A—C25B146.2
O2i—Pr1—N176.88 (9)C28A—C27A—C25B93.7
O8ii—Pr1—N1122.05 (10)C26B—C27A—C28B154.6
O5i—Pr1—O572.90 (10)C26A—C27A—C28B129.4
O2i—Pr1—O565.21 (8)C25B—C27A—C28B103.1
O8ii—Pr1—O5129.91 (9)C28B—C28A—C27B109.4
C13—O1—Pr1130.3 (2)C28B—C28A—C23B84.9
C13—O2—Pr1i137.7 (2)C27B—C28A—C23B164.8
C15—O3—C14117.6 (3)C28B—C28A—C27A145.7
C21—O4—Pr1101.0 (2)C23B—C28A—C27A128.5
C21—O5—Pr1i163.1 (3)C28B—C28A—C23A93.7
C21—O5—Pr187.9 (2)C27B—C28A—C23A156.7
Pr1i—O5—Pr1107.10 (9)C27A—C28A—C23A120.0
C23B—O6—C22119.6 (3)C28B—C28A—C26B155.7
C22—O6—C23A112.6 (3)C27B—C28A—C26B46.7
C29—O7—Pr1151.9 (2)C23B—C28A—C26B118.6
C29—O8—Pr1ii150.0 (2)C23A—C28A—C26B110.0
C31—O9—C30117.4 (3)C28B—C28A—C24B127.6
C1—N1—C5118.0 (4)C27B—C28A—C24B122.4
C1—N1—Pr1120.6 (3)C27A—C28A—C24B85.7
C5—N1—Pr1119.9 (3)C26B—C28A—C24B75.7
C12—N2—C9118.5 (3)O6—C23B—C28A134.3 (3)
C12—N2—Pr1119.6 (3)O6—C23B—C24B128.8 (2)
C9—N2—Pr1121.6 (2)C28A—C23B—C24B96.6
N1—C1—C2123.4 (4)O6—C23B—C28B111.1 (3)
N1—C1—H1118.3C24B—C23B—C28B120.0
C2—C1—H1118.3O6—C23B—C24A115.1 (2)
C3—C2—C1118.4 (5)C28A—C23B—C24A110.3
C3—C2—H2120.8C28B—C23B—C24A133.7
C1—C2—H2120.8C23A—C24B—C25A153.2
C4—C3—C2120.3 (5)C25A—C24B—C23B152.0
C4—C3—H3119.9C23A—C24B—C25B121.2
C2—C3—H3119.9C23B—C24B—C25B120.0
C3—C4—C5118.0 (5)C25A—C24B—C28A111.6
C3—C4—C6123.0 (6)C25B—C24B—C28A79.6
C5—C4—C6119.1 (6)C25A—C25B—C26A136.4
N1—C5—C4121.9 (4)C25A—C25B—C24B67.0
N1—C5—C9118.2 (4)C26A—C25B—C24B156.1
C4—C5—C9120.0 (4)C25A—C25B—C26B172.8
C7—C6—C4120.7 (6)C24B—C25B—C26B120.0
C7—C6—H6119.7C25A—C25B—C24A55.5
C4—C6—H6119.7C26A—C25B—C24A167.7
C6—C7—C8122.1 (5)C26B—C25B—C24A131.5
C6—C7—H7118.9C25A—C25B—C27A167.8
C8—C7—H7118.9C26A—C25B—C27A55.3
C10—C8—C7124.2 (5)C24B—C25B—C27A101.1
C10—C8—C9116.9 (5)C24A—C25B—C27A112.6
C7—C8—C9118.9 (5)C27A—C26B—C26A138.7
N2—C9—C5118.9 (3)C26A—C26B—C27B149.3
N2—C9—C8121.9 (4)C27A—C26B—C25B109.4
C5—C9—C8119.1 (4)C27B—C26B—C25B120.0
C11—C10—C8121.1 (4)C26A—C26B—C28A114.2
C11—C10—H10119.5C25B—C26B—C28A84.7
C8—C10—H10119.5C27A—C27B—C28A90.7
C10—C11—C12119.4 (5)C28A—C27B—C26B98.0
C10—C11—H11120.3C27A—C27B—C28B112.7
C12—C11—H11120.3C26B—C27B—C28B120.0
N2—C12—C11122.0 (5)C28A—C28B—C27B48.5
N2—C12—H12119.0C28A—C28B—C23B71.7
C11—C12—H12119.0C27B—C28B—C23B120.0
O2—C13—O1128.2 (3)C28A—C28B—C23A65.1
O2—C13—C14119.1 (4)C27B—C28B—C23A113.5
O1—C13—C14112.7 (3)C23B—C28B—C27A95.9
O3—C14—C13110.9 (3)C23A—C28B—C27A89.4
O3—C14—H14A109.5O8—C29—O7126.7 (3)
C13—C14—H14A109.5O8—C29—C30120.06 (18)
O3—C14—H14B109.5O7—C29—C30113.28 (15)
C13—C14—H14B109.5O9—C30—C29111.20 (18)
H14A—C14—H14B108.0O9—C30—H30A109.4
C16—C15—C20120.9 (4)C29—C30—H30A109.4
C16—C15—O3114.8 (4)O9—C30—H30B109.4
C20—C15—O3124.3 (4)C29—C30—H30B109.4
C15—C16—C17119.9 (5)H30A—C30—H30B108.0
C15—C16—H16120.0C36—C31—O9124.9 (4)
C17—C16—H16120.0C36—C31—C32119.6 (4)
C18—C17—C16120.0 (6)O9—C31—C32115.5 (4)
C18—C17—H17120.0C33—C32—C31120.0 (5)
C16—C17—H17120.0C33—C32—H32120.0
C19—C18—C17120.5 (5)C31—C32—H32120.0
C19—C18—H18119.7C32—C33—C34120.1 (5)
C17—C18—H18119.7C32—C33—H33119.9
C18—C19—C20120.9 (6)C34—C33—H33119.9
C18—C19—H19119.5C35—C34—C33119.1 (5)
C20—C19—H19119.5C35—C34—H34120.5
C15—C20—C19117.7 (5)C33—C34—H34120.5
C15—C20—H20121.2C34—C35—C36121.7 (5)
C19—C20—H20121.2C34—C35—H35119.1
O4—C21—O5122.8 (3)C36—C35—H35119.1
O4—C21—C22120.2 (3)C31—C36—C35119.4 (5)
O5—C21—C22117.0 (4)C31—C36—H36120.3
O6—C22—C21113.9 (3)C35—C36—H36120.3
O6—C22—H22A108.8

Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+2, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.932.463.147 (5)130
C10—H10···O4iii0.932.343.211 (5)156
C12—H12···O8ii0.932.473.063 (5)122
C22—H22B···O7iv0.972.413.353 (5)166

Symmetry codes: (i) −x+2, −y, −z+2; (iii) −x+3/2, y+1/2, −z+3/2; (ii) −x+2, −y+1, −z+2; (iv) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RT2009).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Daiguebonne, C., Guillou, O. & Boubekeur, K. (2000). Inorg. Chim. Acta, 304, 161–169.
  • Farrugia, L. J., Peacock, R. D. & Stewart, B. (2000). Acta Cryst. C56, e435–e436.
  • Kay, J., Moore, J. W. & Glick, M. D. (1972). Inorg. Chem.11, 2818–2827.
  • Ma, L., Evans, O. R., Foxman, B. M. & Lin, W. B. (1999). Inorg. Chem.38, 5837–5840.
  • Mao, J. G., Zhang, H. J., Ni, J. Z., Wang, S. B. & Mak, T. C. W. (1998). J. Chem. Crystallogr.17, 3999–4009.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Siemens (1996). SMART, SAINT and SHELXTL Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Starynowicz, P. (1991). Acta Cryst. C47, 294–297.
  • Starynowicz, P. (1993). Acta Cryst. C49, 1895–1897.
  • Tsukube, H. & Shinoda, S. (2002). Chem. Rev.102, 2389–2404. [PubMed]
  • Zeng, X.-R., Xu, Y., Xiong, R.-G., Zhang, L.-J. & You, X.-Z. (2000). Acta Cryst. C56, e325–e326.
  • Zhang, Z.-H., Shen, Z.-L., Okamura, T.-A., Zhu, H.-F., Sun, W.-Y. & Ueyama, N. (2005). Cryst. Growth Des.5, 1191–1197.
  • Zhong, H., Yang, X.-M., Xie, H.-L. & Luo, C.-J. (2007). Acta Cryst. E63, m2508–m2509.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography