PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o487.
Published online 2008 January 23. doi:  10.1107/S1600536808001669
PMCID: PMC2960177

9-(Dimethoxy­meth­yl)anthracene

Abstract

In the title compound, C17H16O2, a dimethyl acetal of 9-anthraldehyde, the anthracene skeleton is planar and the two meth­oxy groups attached to the C atom at position 9 of the aromatic ring system are located above and below the ring system.

Related literature

For 9-chloro-10-(dimethoxy­meth­yl)anthracene, see: Yuan et al. (2004 [triangle]). For anologous compounds, see: Akiba et al. (1999 [triangle]); Yamashita et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o487-scheme1.jpg

Experimental

Crystal data

  • C17H16O2
  • M r = 252.30
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o487-efi1.jpg
  • a = 8.2310 (16) Å
  • b = 17.446 (4) Å
  • c = 19.261 (4) Å
  • V = 2766.0 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 291 (2) K
  • 0.16 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.987, T max = 0.990
  • 12827 measured reflections
  • 2433 independent reflections
  • 1215 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.166
  • S = 0.90
  • 2433 reflections
  • 174 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808001669/bt2672sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001669/bt2672Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

WH acknowledges the Major State Basic Research Development Programs (Nos. 2006CB806104 and 2007CB925101), the National Natural Science Foundation of China (No. 20301009) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, for financial aid.

supplementary crystallographic information

Comment

Anthracene is a very useful compound for supramolecular photochemistry. Several crystal structures of anthracene derivatives have been reported previously (Akiba et al., 1999; Yuan et al., 2004; Yamashita et al., 2005;).

The atom-numbering scheme of the title compound is shown in Fig. 1. The bond lengths and angles are in the normal ranges compared with related compounds. The dihedral angles between the anthracene plane and the C15—O1—C16 and C15—O2—C17 groups are 71.6 (3) and 75.8 (4)°, respectively, and that between the latter two groups is 85.6 (2)°. These dihedral angles are silghtly different from 9-chloro-10-(dimethoxymethyl)anthracene (Yuan et al., 2004)

Experimental

The treatment of 9-anthraldehyde (0.5 mmol, 0.010 g) and 4-aminopyridine (0.5 mmol, 0.041 g) in 20 cm3 me thanol with a few drops of HOAc as catalyst under reflux condition for 2 h produces the yellow compound 9-(dimethoxymethyl)anthracene as a by-product. Single crystals suitable for X-ray diffraction measurement formed after 1 week by slow evaporation at room temperature in air. Anal. Calcd. for C17H16O2: C, 80.93; H, 6.39; O, 12.68%. Found: C, 81.00; H, 6.33; O, 12.74%. FT—IR (KBr pellets, cm-1): 2932, 1448, 1186, 1105, 1066, 891, 740. 1H NMR (500 MHz, CDCl3): d = 3.57 (s, 6H), 6.59 (s, 1H), 7.29–7.56 (m, 4H), 8.01(d, 2H, J = 8.4 Hz), 8.49 (s, 1H), 8.74 (d, 2H, J = 8.9 Hz).

Refinement

H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98 Å) and refined as riding atoms, with Uiso(H) = 1.5Ueq(for methyl C) or Uiso(H) = 1.2Ueq(C) for the other C atoms. The methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1.
A perspective view of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C17H16O2F000 = 1072
Mr = 252.30Dx = 1.212 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1781 reflections
a = 8.2310 (16) Åθ = 2.4–19.5º
b = 17.446 (4) ŵ = 0.08 mm1
c = 19.261 (4) ÅT = 291 (2) K
V = 2766.0 (10) Å3Block, yellow
Z = 80.16 × 0.12 × 0.10 mm

Data collection

Bruker SMART 1K CCD area-detector diffractometer2433 independent reflections
Radiation source: fine-focus sealed tube1215 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.045
T = 291(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −9→4
Tmin = 0.987, Tmax = 0.990k = −20→20
12827 measured reflectionsl = −22→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.166  w = 1/[σ2(Fo2) + (0.0954P)2] where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
2433 reflectionsΔρmax = 0.14 e Å3
174 parametersΔρmin = −0.16 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.9017 (2)0.20745 (12)0.59464 (10)0.0592 (6)
C21.0164 (3)0.15624 (15)0.62298 (12)0.0719 (7)
C31.0584 (3)0.08576 (16)0.59060 (17)0.0944 (9)
H31.00520.07090.55020.113*
C41.1755 (4)0.03974 (19)0.6180 (2)0.1378 (15)
H41.2030−0.00560.59560.165*
C51.2563 (5)0.0603 (4)0.6806 (3)0.170 (3)
H51.33560.02820.69910.204*
C61.2182 (5)0.1251 (3)0.7122 (2)0.1453 (19)
H61.27040.13760.75350.174*
C71.0996 (3)0.1764 (2)0.68494 (16)0.0975 (9)
C81.0683 (4)0.2472 (3)0.71548 (15)0.1118 (13)
H81.11930.25910.75720.134*
C90.9649 (4)0.3003 (2)0.68643 (14)0.0918 (9)
C100.9437 (5)0.3758 (3)0.71550 (19)0.1275 (14)
H100.99670.38900.75640.153*
C110.8487 (6)0.4268 (3)0.6839 (3)0.1449 (18)
H110.83790.47550.70290.174*
C120.7655 (4)0.40904 (18)0.6236 (2)0.1184 (11)
H120.70010.44580.60270.142*
C130.7787 (3)0.33873 (15)0.59484 (15)0.0859 (8)
H130.72080.32790.55450.103*
C140.8787 (3)0.28072 (14)0.62451 (11)0.0683 (6)
C150.8077 (3)0.18624 (13)0.53064 (11)0.0665 (6)
H150.72240.22440.52280.080*
C160.8383 (4)0.19124 (18)0.40849 (13)0.1082 (10)
H16A0.77510.14570.40130.162*
H16B0.91890.19540.37270.162*
H16C0.76830.23520.40710.162*
C170.5853 (4)0.11064 (19)0.5615 (2)0.1447 (14)
H17A0.59030.11940.61060.217*
H17B0.53880.06110.55280.217*
H17C0.51910.14940.54020.217*
O10.91609 (19)0.18736 (10)0.47445 (8)0.0856 (6)
O20.7373 (2)0.11349 (10)0.53439 (10)0.1011 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0515 (12)0.0712 (14)0.0550 (12)−0.0066 (10)−0.0002 (10)0.0067 (11)
C20.0531 (13)0.0901 (18)0.0726 (15)−0.0153 (12)−0.0023 (12)0.0273 (13)
C30.0662 (16)0.0813 (18)0.136 (2)0.0036 (14)0.0014 (15)0.0344 (18)
C40.085 (2)0.116 (3)0.212 (4)0.0196 (19)0.016 (3)0.085 (3)
C50.076 (3)0.217 (6)0.217 (6)0.015 (3)−0.002 (3)0.159 (5)
C60.075 (2)0.228 (5)0.133 (3)−0.030 (3)−0.028 (2)0.112 (4)
C70.0644 (17)0.152 (3)0.0764 (19)−0.0268 (18)−0.0093 (15)0.047 (2)
C80.088 (2)0.197 (4)0.0512 (17)−0.063 (2)−0.0075 (16)0.017 (2)
C90.0807 (18)0.134 (3)0.0610 (16)−0.0455 (18)0.0157 (15)−0.0198 (17)
C100.122 (3)0.168 (4)0.093 (2)−0.070 (3)0.036 (2)−0.057 (3)
C110.133 (4)0.138 (4)0.164 (4)−0.051 (3)0.069 (3)−0.078 (3)
C120.109 (2)0.084 (2)0.162 (3)−0.0046 (17)0.035 (2)−0.034 (2)
C130.0760 (17)0.0774 (18)0.104 (2)−0.0029 (13)0.0122 (15)−0.0166 (15)
C140.0594 (13)0.0861 (17)0.0592 (14)−0.0165 (12)0.0092 (11)−0.0070 (13)
C150.0599 (13)0.0661 (15)0.0734 (15)0.0031 (11)−0.0072 (12)−0.0050 (11)
C160.116 (2)0.140 (3)0.0684 (17)0.0100 (19)−0.0208 (17)−0.0019 (16)
C170.090 (2)0.130 (3)0.214 (4)−0.0208 (19)0.020 (2)0.042 (3)
O10.0743 (11)0.1222 (15)0.0603 (10)0.0161 (9)−0.0063 (9)−0.0078 (8)
O20.0775 (12)0.0773 (12)0.1486 (18)−0.0096 (9)−0.0174 (11)−0.0122 (10)

Geometric parameters (Å, °)

C1—C21.410 (3)C10—H100.9300
C1—C141.415 (3)C11—C121.384 (6)
C1—C151.501 (3)C11—H110.9300
C2—C71.420 (4)C12—C131.350 (4)
C2—C31.421 (4)C12—H120.9300
C3—C41.361 (4)C13—C141.424 (3)
C3—H30.9300C13—H130.9300
C4—C51.422 (7)C15—O21.397 (3)
C4—H40.9300C15—O11.403 (2)
C5—C61.324 (6)C15—H150.9800
C5—H50.9300C16—O11.424 (3)
C6—C71.425 (5)C16—H16A0.9600
C6—H60.9300C16—H16B0.9600
C7—C81.392 (4)C16—H16C0.9600
C8—C91.377 (4)C17—O21.357 (3)
C8—H80.9300C17—H17A0.9600
C9—C141.429 (3)C17—H17B0.9600
C9—C101.443 (5)C17—H17C0.9600
C10—C111.331 (5)
C2—C1—C14120.3 (2)C10—C11—H11119.2
C2—C1—C15120.4 (2)C12—C11—H11119.2
C14—C1—C15119.20 (19)C13—C12—C11120.5 (4)
C1—C2—C7119.4 (3)C13—C12—H12119.7
C1—C2—C3122.8 (2)C11—C12—H12119.7
C7—C2—C3117.8 (3)C12—C13—C14121.8 (3)
C4—C3—C2120.8 (3)C12—C13—H13119.1
C4—C3—H3119.6C14—C13—H13119.1
C2—C3—H3119.6C1—C14—C13123.8 (2)
C3—C4—C5120.8 (4)C1—C14—C9119.3 (2)
C3—C4—H4119.6C13—C14—C9116.9 (2)
C5—C4—H4119.6O2—C15—O1108.44 (18)
C6—C5—C4119.7 (4)O2—C15—C1113.28 (18)
C6—C5—H5120.2O1—C15—C1107.61 (17)
C4—C5—H5120.2O2—C15—H15109.1
C5—C6—C7122.0 (5)O1—C15—H15109.1
C5—C6—H6119.0C1—C15—H15109.1
C7—C6—H6119.0O1—C16—H16A109.5
C8—C7—C2119.1 (3)O1—C16—H16B109.5
C8—C7—C6121.9 (4)H16A—C16—H16B109.5
C2—C7—C6119.0 (4)O1—C16—H16C109.5
C9—C8—C7122.7 (3)H16A—C16—H16C109.5
C9—C8—H8118.7H16B—C16—H16C109.5
C7—C8—H8118.7O2—C17—H17A109.5
C8—C9—C14119.0 (3)O2—C17—H17B109.5
C8—C9—C10122.1 (4)H17A—C17—H17B109.5
C14—C9—C10118.8 (3)O2—C17—H17C109.5
C11—C10—C9120.2 (4)H17A—C17—H17C109.5
C11—C10—H10119.9H17B—C17—H17C109.5
C9—C10—H10119.9C15—O1—C16113.76 (19)
C10—C11—C12121.7 (4)C17—O2—C15115.8 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2672).

References

  • Akiba, K., Yamashita, M., Yamamoto, Y. & Nagase, S. (1999). J. Am. Chem. Soc.121, 10644–10645.
  • Bruker (2000). SMART (Version 5.622), SAINT (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yamashita, M., Yamamoto, Y., Akiba, K., Hashizume, D., Iwasaki, F., Takagi, N. & Nagase, S. (2005). J. Am. Chem. Soc.127, 4354–4371. [PubMed]
  • Yuan, W.-B., Yan, L. & Yang, R.-D. (2004). Acta Cryst. E60, o2447–o2448.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography