PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m347.
Published online 2008 January 16. doi:  10.1107/S1600536807067955
PMCID: PMC2960175

Bis(pyridine-κN)bis­[4,4,4-trifluoro-1-(4-fluoro­phen­yl)butane-1,3-dionato-κ2 O,O′]cobalt(II)

Abstract

In the structure of the title compound, [Co(C10H5F4O2)2(C5H5N)2], cobalt(II) forms a complex with two 4,4,4-trifluoro-1-(4-fluoro­phen­yl)butane-1,3-dionate anions and two pyridine mol­ecules in an octa­hedral coordination environment, where the two dionate ligands are in equatorial positions and the two pyridine mol­ecules in axial positions. The complex is located on a crystallographic inversion centre.

Related literature

For related literature, see: Fan et al. (2007 [triangle]); Feng (2002 [triangle]); Lu et al. (2003 [triangle]); Sloopa et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m347-scheme1.jpg

Experimental

Crystal data

  • [Co(C10H5F4O2)2(C5H5N)2]
  • M r = 683.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m347-efi1.jpg
  • a = 8.5181 (6) Å
  • b = 17.0379 (13) Å
  • c = 10.0150 (7) Å
  • β = 90.374 (2)°
  • V = 1453.45 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.68 mm−1
  • T = 293 (2) K
  • 0.40 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART 4K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.772, T max = 0.935
  • 16450 measured reflections
  • 3299 independent reflections
  • 2136 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.138
  • S = 1.09
  • 3299 reflections
  • 205 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2001 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067955/kj2078sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067955/kj2078Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Hubei Normal University and the Natural Science Foundation of the Educational Commission of Hubei Province (grant Nos. J200522002 and Z200622001) for financial support.

supplementary crystallographic information

Comment

The chelating group 1,3-diketone, widely used in coordination chemistry for a long time (Fan et al., 2007; Lu et al., 2003; Feng, 2002), has been increasingly encountered as a constituent of polydentate ligands in the context of metallo-supramolecular chemistry. In this paper, we report the crystal structure of the title compound, Co(C10H5O2F4)2(C5H5N)2. The Co(II) ion is located on a crystallographic inversion centre and is coordinated by two 4,4,4-trifluoro-1-(4-fluorophenyl)butane-1,3-dione oxygen atoms and two nitrogen atoms of pyridines, forming a distorted octahedron coordination geometry (Fig. 1). The chelate fragment is planar and the both lengths imply strong conjugation in chelate rings (Table 1).

Experimental

The ligand 4,4,4-trifluoro-1-(4-fluorophenyl)butane-1,3-dione was synthesized according to the reported literature (Sloopa et al., 2002). The coordination compound was prepared according to the following procedure: a mixture of ligand (0.328 g, 1.4 mmol) and pyridine (0.111 g, 1.4 mmol), dissolved in hot acetone (20 ml) was added slowly to a solution of Co(CH3COO)2 ˙4H2O (0.174 g, 0.7 mmol) in water (10 ml). The mixture was stirred for 3 h. After filtration, the red solution was allowed to stand at room temperature. Brown block-shaped crystals suitable for X-ray analysis were obtained in several days. C, H and N content analyses were performed on a Perkin Elmer 2400 analytical instrument. Anal. Calcd. (%) for C30H20CoF8N2O4: C, 52.72; H, 2.95; N, 4.10. Found (%): C, 53.01; H, 2.72; N, 4.20.

Refinement

All the H atoms were placed at their idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H-atoms are represented by circles of arbitrary size. Symmetry codes: a: (2 - x, 2 - y, 2 - z).

Crystal data

[Co(C10H5F4O2)2(C5H5N)2]F000 = 690
Mr = 683.41Dx = 1.562 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 1950 reflections
a = 8.5181 (6) Åθ = 2.4–20.8º
b = 17.0379 (13) ŵ = 0.68 mm1
c = 10.0150 (7) ÅT = 293 (2) K
β = 90.374 (2)ºBlock, brown
V = 1453.45 (18) Å30.40 × 0.10 × 0.10 mm
Z = 2

Data collection

Bruker SMART 4K CCD area-detector diffractometer3299 independent reflections
Radiation source: fine-focus sealed tube2136 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.063
T = 293(2) Kθmax = 27.5º
[var phi] and ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 2001)h = −11→11
Tmin = 0.772, Tmax = 0.935k = −22→21
16450 measured reflectionsl = −12→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.138  w = 1/[σ2(Fo2) + (0.059P)2 + 0.1443P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3299 reflectionsΔρmax = 0.44 e Å3
205 parametersΔρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co11.00001.00001.00000.0428 (2)
C11.1943 (3)0.9984 (2)0.6036 (3)0.0479 (8)
C21.2093 (4)0.9561 (3)0.4859 (3)0.0659 (10)
H21.15910.90790.47650.079*
C31.2988 (5)0.9855 (3)0.3824 (4)0.0766 (12)
H31.30850.95740.30330.092*
C41.3713 (4)1.0548 (3)0.3971 (4)0.0754 (12)
C51.3597 (4)1.0991 (2)0.5103 (4)0.0732 (11)
H51.40991.14740.51780.088*
C61.2700 (4)1.0691 (2)0.6137 (3)0.0599 (9)
H61.26111.09780.69220.072*
C71.0984 (3)0.97134 (18)0.7195 (3)0.0432 (7)
C81.0258 (4)0.89683 (18)0.7204 (3)0.0495 (8)
H81.04780.86270.65060.059*
C90.9242 (3)0.87138 (17)0.8183 (3)0.0442 (7)
C100.8602 (4)0.7887 (2)0.8059 (3)0.0568 (9)
C110.8337 (4)1.1450 (2)0.8834 (4)0.0673 (10)
H110.93441.15310.85090.081*
C120.7186 (5)1.1979 (2)0.8505 (5)0.0860 (13)
H120.74221.24140.79830.103*
C130.5687 (5)1.1862 (3)0.8949 (5)0.0824 (12)
H130.48831.22060.87160.099*
C140.5405 (4)1.1228 (3)0.9741 (4)0.0757 (11)
H140.44041.11361.00730.091*
C150.6617 (4)1.0729 (2)1.0041 (3)0.0601 (9)
H150.64111.02991.05840.072*
F11.4601 (3)1.08363 (17)0.2953 (2)0.1107 (9)
F30.8525 (3)0.76125 (12)0.6819 (2)0.0869 (7)
F40.7189 (3)0.78070 (13)0.8566 (3)0.1041 (9)
F50.9517 (3)0.73792 (12)0.8714 (2)0.0910 (7)
N10.8080 (3)1.08270 (15)0.9594 (2)0.0481 (6)
O10.8796 (2)0.90574 (12)0.9225 (2)0.0506 (5)
O21.0882 (2)1.01973 (12)0.8149 (2)0.0505 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0456 (3)0.0427 (4)0.0403 (3)−0.0036 (3)0.0131 (2)−0.0079 (3)
C10.0444 (17)0.062 (2)0.0373 (17)0.0143 (16)0.0035 (13)0.0043 (15)
C20.057 (2)0.097 (3)0.043 (2)0.004 (2)0.0051 (17)−0.0090 (19)
C30.065 (2)0.127 (4)0.037 (2)0.014 (2)0.0073 (17)−0.003 (2)
C40.059 (2)0.115 (4)0.053 (2)0.023 (2)0.0165 (19)0.035 (2)
C50.077 (3)0.073 (3)0.070 (3)0.011 (2)0.026 (2)0.022 (2)
C60.069 (2)0.060 (2)0.051 (2)0.0100 (18)0.0191 (17)0.0066 (17)
C70.0398 (16)0.0505 (18)0.0393 (18)0.0114 (14)0.0037 (13)−0.0001 (14)
C80.0566 (19)0.0513 (19)0.0408 (18)0.0110 (15)0.0085 (15)−0.0100 (14)
C90.0413 (17)0.0419 (17)0.0494 (19)0.0061 (14)0.0017 (14)−0.0087 (14)
C100.060 (2)0.049 (2)0.061 (2)−0.0014 (17)0.0095 (17)−0.0132 (17)
C110.059 (2)0.056 (2)0.088 (3)−0.0057 (18)0.0111 (19)0.011 (2)
C120.086 (3)0.055 (2)0.117 (4)0.007 (2)−0.001 (3)0.019 (2)
C130.072 (3)0.071 (3)0.105 (3)0.023 (2)−0.005 (2)−0.013 (3)
C140.051 (2)0.091 (3)0.084 (3)0.016 (2)0.0119 (19)−0.013 (2)
C150.056 (2)0.067 (2)0.057 (2)0.0000 (18)0.0144 (17)−0.0027 (18)
F10.0994 (17)0.166 (3)0.0678 (15)0.0212 (17)0.0392 (13)0.0496 (15)
F30.1210 (19)0.0674 (14)0.0721 (15)−0.0174 (13)−0.0008 (13)−0.0267 (11)
F40.0790 (16)0.0701 (15)0.164 (2)−0.0272 (12)0.0479 (16)−0.0429 (15)
F50.1182 (19)0.0515 (13)0.1031 (19)0.0003 (12)−0.0169 (15)0.0079 (12)
N10.0459 (15)0.0505 (16)0.0479 (15)−0.0032 (12)0.0095 (12)−0.0060 (12)
O10.0502 (12)0.0512 (13)0.0506 (13)−0.0053 (10)0.0154 (10)−0.0114 (10)
O20.0610 (13)0.0467 (13)0.0440 (13)−0.0027 (10)0.0178 (10)−0.0046 (9)

Geometric parameters (Å, °)

Co1—O12.055 (2)C7—C81.412 (4)
Co1—O1i2.055 (2)C8—H80.9300
Co1—O22.033 (2)C8—C91.382 (4)
Co1—O2i2.033 (2)C9—O11.257 (3)
Co1—N1i2.195 (3)C9—C101.516 (4)
Co1—N12.195 (3)C10—F31.328 (4)
C1—C21.388 (4)C10—F41.316 (4)
C1—C61.370 (4)C10—F51.334 (4)
C1—C71.496 (4)C11—N11.325 (4)
C2—H20.9300C11—H110.9300
C2—C31.385 (5)C11—C121.370 (5)
C3—H30.9300C12—H120.9300
C3—C41.339 (6)C12—C131.370 (5)
C4—F11.365 (4)C13—H130.9300
C4—C51.366 (5)C13—C141.362 (6)
C5—H50.9300C14—H140.9300
C5—C61.389 (5)C14—C151.370 (5)
C6—H60.9300C15—N11.338 (4)
C7—O21.266 (3)C15—H150.9300
O1—Co1—N1i86.43 (9)C9—C8—C7124.3 (3)
O1i—Co1—N1i93.58 (9)C9—C8—H8117.9
O1—Co1—O1i180C9—O1—Co1121.66 (19)
O1—Co1—O288.35 (8)C11—C12—H12120.2
O1—Co1—N193.58 (9)C11—N1—C15116.7 (3)
O2i—Co1—O191.65 (8)C11—N1—Co1119.7 (2)
O2i—Co1—O1i88.35 (8)C12—C11—H11118.5
O2—Co1—N190.24 (9)C12—C13—H13120.9
O2—Co1—N1i89.76 (9)C13—C12—C11119.6 (4)
O2i—Co1—N1i90.24 (9)C13—C12—H12120.2
O2—Co1—O2i180C13—C14—H14120.5
N1i—Co1—N1180C13—C14—C15119.0 (4)
C1—C2—H2119.9C14—C13—C12118.2 (4)
C1—C6—C5122.0 (3)C14—C13—H13120.9
C1—C6—H6119.0C14—C15—H15118.3
C2—C1—C7123.6 (3)C15—C14—H14120.5
C2—C3—H3120.2C15—N1—Co1123.6 (2)
C3—C2—C1120.1 (4)O1—C9—C8129.5 (3)
C3—C2—H2119.9O1—C9—C10113.0 (3)
C3—C4—F1119.5 (4)O2—C7—C1115.2 (3)
C3—C4—C5122.9 (4)O2—C7—C8123.2 (3)
C4—C3—C2119.5 (4)F1—C4—C5117.6 (4)
C4—C3—H3120.3F3—C10—C9114.8 (3)
C4—C5—H5121.4F3—C10—F5104.9 (3)
C4—C5—C6117.2 (4)F4—C10—F3106.5 (3)
C5—C6—H6119.0F4—C10—F5106.1 (3)
C6—C1—C2118.2 (3)F4—C10—C9113.2 (3)
C6—C1—C7118.2 (3)F5—C10—C9110.7 (3)
C6—C5—H5121.4N1—C11—H11118.5
C7—C8—H8117.9N1—C11—C12123.0 (4)
C7—O2—Co1127.5 (2)N1—C15—C14123.5 (4)
C8—C7—C1121.5 (3)N1—C15—H15118.3
C8—C9—C10117.4 (3)
C6—C1—C2—C3−0.1 (5)C12—C13—C14—C15−1.1 (6)
C7—C1—C2—C3179.3 (3)C13—C14—C15—N1−0.1 (6)
C1—C2—C3—C40.4 (5)C12—C11—N1—C150.1 (5)
C2—C3—C4—F1179.7 (3)C12—C11—N1—Co1178.0 (3)
C2—C3—C4—C5−0.9 (6)C14—C15—N1—C110.7 (5)
C3—C4—C5—C61.0 (6)C14—C15—N1—Co1−177.2 (3)
F1—C4—C5—C6−179.6 (3)O2—Co1—N1—C11−33.8 (3)
C2—C1—C6—C50.2 (5)O2i—Co1—N1—C11146.2 (3)
C7—C1—C6—C5−179.1 (3)O1—Co1—N1—C11−122.2 (3)
C4—C5—C6—C1−0.6 (5)O1i—Co1—N1—C1157.8 (3)
C6—C1—C7—O24.3 (4)O2—Co1—N1—C15144.0 (3)
C2—C1—C7—O2−175.0 (3)O2i—Co1—N1—C15−36.0 (3)
C6—C1—C7—C8−175.6 (3)O1—Co1—N1—C1555.6 (3)
C2—C1—C7—C85.1 (5)O1i—Co1—N1—C15−124.4 (3)
O2—C7—C8—C96.5 (5)C8—C9—O1—Co1−17.9 (4)
C1—C7—C8—C9−173.6 (3)C10—C9—O1—Co1158.9 (2)
C7—C8—C9—O1−1.7 (5)O2—Co1—O1—C923.5 (2)
C7—C8—C9—C10−178.3 (3)O2i—Co1—O1—C9−156.5 (2)
O1—C9—C10—F433.3 (4)N1i—Co1—O1—C9−66.3 (2)
C8—C9—C10—F4−149.5 (3)N1—Co1—O1—C9113.7 (2)
O1—C9—C10—F3155.9 (3)C8—C7—O2—Co110.3 (4)
C8—C9—C10—F3−26.9 (4)C1—C7—O2—Co1−169.56 (18)
O1—C9—C10—F5−85.6 (3)O1—Co1—O2—C7−21.1 (2)
C8—C9—C10—F591.5 (3)O1i—Co1—O2—C7158.9 (2)
N1—C11—C12—C13−1.3 (7)N1i—Co1—O2—C765.4 (2)
C11—C12—C13—C141.8 (7)N1—Co1—O2—C7−114.6 (2)

Symmetry codes: (i) −x+2, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2078).

References

  • Bruker (1997). SMART Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SHELXTL Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fan, L., Wang, D.-J. & Zheng, J. (2007). Acta Cryst. E63, m1980.
  • Feng, Y. L. (2002). Chin. J. Inorg. Chem.18, 723–725.
  • Lu, H. J., Gao, J., Du, C. X., Fan, Y. T., Hou, H. W., Ding, D. G. & Zhai, J. L. (2003). Chin. J. Inorg. Chem.19, 174–178.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sloopa, J. C., Bumgardnerb, C. L. & Loehle, W. D. (2002). J. Fluorine Chem.118, 135–147.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography