PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o540.
Published online 2008 January 30. doi:  10.1107/S160053680800305X
PMCID: PMC2960174

N-(2,6-Dichloro­phen­yl)benzamide

Abstract

The conformation of the N—H and C=O bonds in the structure of the title compound (N26DCPBA), C13H9Cl2NO, are anti to each other, similar to that observed in N-phenyl­benzamide (NPBA), N-(2-chloro­phen­yl)benzamide (N2CPBA), N-(2,3-dichloro­phen­yl)benzamide (N23DCPBA) and other benzanilides. The asymmetric unit of N26DCPBA contains two mol­ecules. The bond parameters in N26DCPBA are similar to those in NPBA, N2CPBA, N23DCPBA and other benzanilides. The amide group, –NHCO–, makes a dihedral angle of 30.8 (1)° with the benzoyl ring in the first mol­ecule and 35.1 (2)° in the second mol­ecule of the asymmetric unit. The dihedral angle between the two benzene rings (benzoyl and aniline) is 56.8 (1)° in the first mol­ecule and 59.1 (1)° in the second mol­ecule. N—H(...)O hydrogen bonds give rise to infinite chains running along the a axis of the crystal structure.

Related literature

For related literature, see: Gowda et al. (2003 [triangle], 2007a [triangle],b [triangle],c [triangle], 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o540-scheme1.jpg

Experimental

Crystal data

  • C13H9Cl2NO
  • M r = 266.11
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o540-efi1.jpg
  • a = 10.0431 (2) Å
  • b = 13.7150 (3) Å
  • c = 18.4585 (4) Å
  • β = 93.623 (2)°
  • V = 2537.41 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.49 mm−1
  • T = 295 (2) K
  • 0.26 × 0.24 × 0.21 mm

Data collection

  • Oxford Diffraction Xcalibur System diffractometer
  • Absorption correction: analytical [(Oxford Diffraction, 2007 [triangle]); analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995 [triangle])] T min = 0.882, T max = 0.904
  • 54956 measured reflections
  • 4956 independent reflections
  • 3810 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.127
  • S = 1.10
  • 4956 reflections
  • 314 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97], PLATON (Spek, 2003 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680800305X/om2209sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800305X/om2209Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (Grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

In the present work, the structure of N-(2,6-dichlorophenyl)-benzamide (N26DCPBA) has been determined to explore the effect of substituents on the structure of N-aromatic amides (Gowda et al., 2003,2007a,b,c,2008). The conformation of the N—H and C=O bonds in the structure of N26DCPBA (Fig.1) are anti to each other, similar to that observed in N-(phenyl)-benzamide (NPBA)(Gowda et al., 2003), N-(2-chlorophenyl)-benzamide (N2CPBA), N-(2,3-dichlorophenyl)-benzamide (N23DCPBA) and other benzanilides(Gowda et al., 2007a,b,c, 2008). The title compound crystallizes in the space group P21/c, with two molecules in the asymmetric unit. The bond parameters in N26DCPBA are similar to those in NPBA, N2CPBA, N23DCPBA and other benzanilides. The amide group –NHCO– has the dihedral angle of 30.8 (1)° with the benzoyl ring in the first molecule and 35.1 (2)° in the second molecule of the asymmetric unit. The dihedral angle between the two benzene rings (benzoyl and aniline) is 56.8 (1)° in the first molecule and 59.1 (1)° in the second molecule. One-dimensional chains of N26DCPBA along the base vector [1 0 0] formed by hydrogen bonds N1–H1N···O2(i) and N2–H2N···O1 (Table 1) as viewed down the b axis is shown in Fig.2. Symmetry code (i): x + 1,y,z.

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

H atoms bonded to C atoms were placed in geometrically calculated positions and subsequently treated as riding with C—H bond distance 0.93 Å. H(N) atoms were visible in the difference map. In the refinement the N—H distance was restrained to 0.86 (4) Å. The Uiso(H) values were set at 1.2 Ueq(C,N).

Figures

Fig. 1.
Molecular structure of the title compound showing the atom labelling scheme. Numbers of the C atoms in the second molecule are increased by 20. Displacement ellipsoids are drawn at the 30% probability level. The hydrogen bond N2—H2N···O1 ...
Fig. 2.
Crystal structure of the title compound viewed down the b axis. One-dimensional chains along the base vector [1 0 0] are formed by hydrogen bonds N1–H1N···O2 and N2–H2N···O1(i). Symmetry ...

Crystal data

C13H9Cl2NOF000 = 1088
Mr = 266.11Dx = 1.393 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 24495 reflections
a = 10.0431 (2) Åθ = 3.1–29.5º
b = 13.7150 (3) ŵ = 0.49 mm1
c = 18.4585 (4) ÅT = 295 (2) K
β = 93.623 (2)ºBlock, colorless
V = 2537.41 (9) Å30.26 × 0.24 × 0.21 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur System diffractometer4956 independent reflections
Radiation source: Enhance (Mo) X-ray Source3810 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
Detector resolution: 10.434 pixels mm-1θmax = 26.0º
T = 295(2) Kθmin = 5.1º
[var phi] scans, and ω scans with κ offsetsh = −12→12
Absorption correction: analytical[(Oxford Diffraction, 2007); analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995)]k = −16→16
Tmin = 0.883, Tmax = 0.904l = −22→22
54956 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127  w = 1/[σ2(Fo2) + (0.0646P)2 + 0.4979P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
4956 reflectionsΔρmax = 0.40 e Å3
314 parametersΔρmin = −0.35 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0083 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.29163 (15)0.88930 (13)0.13557 (10)0.0468 (4)
C20.31340 (17)0.99515 (13)0.12131 (10)0.0496 (4)
C30.2344 (2)1.06295 (18)0.1520 (2)0.0957 (10)
H30.17181.04330.1840.115*
C40.2478 (3)1.1613 (2)0.1353 (2)0.1205 (13)
H40.19421.20720.15640.145*
C50.3392 (3)1.19053 (19)0.08819 (19)0.0957 (10)
H50.34471.25590.07520.115*
C60.4206 (4)1.1252 (2)0.06070 (14)0.0979 (9)
H60.48561.14560.03040.118*
C70.4090 (3)1.02747 (17)0.07699 (13)0.0798 (7)
H70.46670.98280.05770.096*
C80.39430 (16)0.73180 (13)0.15565 (12)0.0555 (5)
C90.41165 (19)0.70599 (15)0.22837 (14)0.0661 (6)
C100.4153 (2)0.60990 (18)0.25095 (17)0.0805 (7)
H100.42840.59450.30.097*
C110.3993 (2)0.53776 (18)0.19996 (19)0.0853 (8)
H110.40110.47290.21460.102*
C120.3805 (2)0.55993 (17)0.12743 (18)0.0822 (8)
H120.37020.51020.09330.099*
C130.3771 (2)0.65690 (16)0.10524 (14)0.0664 (6)
N10.39953 (14)0.83121 (11)0.13436 (10)0.0535 (4)
H1N0.4772 (19)0.8565 (16)0.1310 (11)0.064*
O10.18181 (11)0.85646 (10)0.14687 (9)0.0635 (4)
Cl10.42425 (7)0.79839 (5)0.29312 (4)0.0924 (2)
Cl20.35242 (9)0.68484 (5)0.01367 (4)0.1030 (3)
C210.79317 (15)0.84885 (12)0.13788 (10)0.0457 (4)
C220.81608 (17)0.75379 (13)0.10084 (11)0.0505 (4)
C230.7373 (2)0.67477 (16)0.11555 (17)0.0803 (8)
H230.67240.68040.14910.096*
C240.7548 (3)0.58684 (18)0.0802 (2)0.1034 (11)
H240.70230.53340.09060.124*
C250.8487 (3)0.57822 (19)0.03020 (18)0.0922 (9)
H250.85880.51930.00620.111*
C260.9277 (3)0.65546 (18)0.01526 (13)0.0761 (7)
H260.99190.6491−0.01860.091*
C270.9124 (2)0.74372 (15)0.05076 (11)0.0588 (5)
H270.96690.79630.04090.071*
C280.89884 (14)0.99789 (11)0.18305 (9)0.0412 (4)
C290.92285 (17)1.01514 (13)0.25670 (10)0.0501 (4)
C300.9290 (2)1.10850 (16)0.28488 (12)0.0622 (5)
H300.94681.11840.33440.075*
C310.9085 (2)1.18598 (15)0.23909 (13)0.0670 (6)
H310.91211.2490.25780.08*
C320.8826 (2)1.17230 (14)0.16579 (13)0.0653 (5)
H320.86831.22550.13510.078*
C330.87794 (18)1.07878 (13)0.13833 (10)0.0511 (4)
N20.90279 (14)0.90255 (10)0.15368 (8)0.0450 (4)
H2N0.9794 (18)0.8817 (14)0.1457 (10)0.054*
O20.68208 (11)0.87638 (10)0.15285 (9)0.0677 (4)
Cl30.94534 (8)0.91674 (5)0.31518 (3)0.0865 (2)
Cl40.84784 (8)1.06116 (5)0.04585 (3)0.0869 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0336 (8)0.0493 (10)0.0569 (10)−0.0039 (7)−0.0009 (7)0.0105 (8)
C20.0427 (9)0.0468 (10)0.0576 (10)−0.0041 (8)−0.0106 (8)0.0080 (8)
C30.0452 (11)0.0592 (14)0.185 (3)0.0027 (10)0.0251 (15)0.0048 (16)
C40.0598 (15)0.0540 (15)0.247 (4)0.0129 (12)0.004 (2)−0.001 (2)
C50.0892 (19)0.0524 (14)0.139 (3)−0.0148 (13)−0.0468 (18)0.0265 (16)
C60.163 (3)0.0603 (15)0.0716 (15)−0.0325 (18)0.0185 (17)0.0136 (12)
C70.125 (2)0.0535 (12)0.0637 (13)−0.0217 (13)0.0321 (13)0.0015 (10)
C80.0290 (8)0.0467 (10)0.0905 (15)−0.0013 (7)0.0021 (8)0.0144 (10)
C90.0424 (10)0.0583 (12)0.0961 (16)−0.0013 (9)−0.0076 (10)0.0177 (11)
C100.0614 (13)0.0643 (15)0.114 (2)0.0050 (11)−0.0110 (13)0.0311 (14)
C110.0612 (13)0.0495 (13)0.145 (3)0.0099 (10)0.0081 (14)0.0293 (15)
C120.0664 (14)0.0485 (12)0.133 (2)−0.0020 (10)0.0192 (15)−0.0005 (14)
C130.0478 (10)0.0548 (12)0.0976 (16)−0.0053 (9)0.0116 (10)0.0053 (11)
N10.0312 (7)0.0452 (8)0.0843 (11)−0.0067 (6)0.0043 (7)0.0129 (8)
O10.0320 (6)0.0573 (8)0.1014 (11)−0.0022 (5)0.0056 (6)0.0213 (7)
Cl10.1026 (5)0.0785 (4)0.0927 (5)−0.0146 (3)−0.0221 (4)0.0098 (3)
Cl20.1321 (6)0.0836 (5)0.0940 (5)−0.0293 (4)0.0131 (4)−0.0028 (4)
C210.0333 (8)0.0438 (9)0.0596 (10)0.0012 (7)0.0003 (7)−0.0075 (8)
C220.0382 (9)0.0435 (9)0.0679 (12)0.0031 (7)−0.0111 (8)−0.0117 (8)
C230.0445 (11)0.0524 (12)0.145 (2)−0.0056 (9)0.0107 (12)−0.0206 (13)
C240.0651 (15)0.0515 (14)0.192 (3)−0.0098 (11)−0.0021 (18)−0.0332 (17)
C250.0757 (16)0.0631 (15)0.134 (2)0.0173 (13)−0.0220 (16)−0.0463 (15)
C260.0871 (16)0.0718 (15)0.0681 (14)0.0202 (13)−0.0060 (12)−0.0257 (11)
C270.0664 (12)0.0531 (11)0.0563 (11)0.0077 (9)−0.0004 (9)−0.0102 (9)
C280.0288 (7)0.0404 (9)0.0547 (10)−0.0010 (6)0.0049 (7)−0.0089 (7)
C290.0464 (9)0.0506 (10)0.0536 (10)0.0008 (8)0.0050 (8)−0.0060 (8)
C300.0624 (12)0.0631 (13)0.0613 (12)−0.0083 (10)0.0060 (10)−0.0219 (10)
C310.0693 (13)0.0448 (11)0.0887 (16)−0.0085 (9)0.0194 (11)−0.0236 (11)
C320.0701 (13)0.0409 (10)0.0862 (16)−0.0001 (9)0.0148 (11)0.0002 (10)
C330.0468 (9)0.0513 (10)0.0554 (10)0.0013 (8)0.0054 (8)−0.0051 (8)
N20.0290 (6)0.0427 (8)0.0634 (9)0.0026 (6)0.0029 (6)−0.0147 (6)
O20.0316 (6)0.0583 (8)0.1137 (12)−0.0017 (6)0.0088 (7)−0.0256 (8)
Cl30.1228 (5)0.0719 (4)0.0638 (4)0.0113 (3)−0.0019 (3)0.0093 (3)
Cl40.1163 (5)0.0878 (4)0.0553 (3)0.0093 (4)−0.0057 (3)0.0019 (3)

Geometric parameters (Å, °)

C1—O11.2214 (19)C21—O21.2258 (19)
C1—N11.346 (2)C21—N21.341 (2)
C1—C21.494 (2)C21—C221.497 (2)
C2—C31.368 (3)C22—C231.379 (3)
C2—C71.373 (3)C22—C271.386 (3)
C3—C41.391 (4)C23—C241.388 (3)
C3—H30.93C23—H230.93
C4—C51.364 (5)C24—C251.366 (4)
C4—H40.93C24—H240.93
C5—C61.335 (4)C25—C261.362 (4)
C5—H50.93C25—H250.93
C6—C71.380 (3)C26—C271.390 (3)
C6—H60.93C26—H260.93
C7—H70.93C27—H270.93
C8—C91.389 (3)C28—C291.386 (2)
C8—C131.389 (3)C28—C331.391 (3)
C8—N11.421 (2)C28—N21.417 (2)
C9—C101.382 (3)C29—C301.382 (3)
C9—Cl11.741 (3)C29—Cl31.734 (2)
C10—C111.368 (4)C30—C311.365 (3)
C10—H100.93C30—H300.93
C11—C121.374 (4)C31—C321.374 (3)
C11—H110.93C31—H310.93
C12—C131.391 (3)C32—C331.379 (3)
C12—H120.93C32—H320.93
C13—Cl21.736 (3)C33—Cl41.732 (2)
N1—H1N0.860 (19)N2—H2N0.843 (18)
O1—C1—N1121.41 (16)O2—C21—N2121.88 (16)
O1—C1—C2122.15 (16)O2—C21—C22122.66 (15)
N1—C1—C2116.43 (14)N2—C21—C22115.46 (14)
C3—C2—C7118.2 (2)C23—C22—C27119.09 (18)
C3—C2—C1119.51 (18)C23—C22—C21119.21 (18)
C7—C2—C1122.29 (18)C27—C22—C21121.68 (16)
C2—C3—C4120.1 (3)C22—C23—C24119.9 (2)
C2—C3—H3120C22—C23—H23120
C4—C3—H3120C24—C23—H23120
C5—C4—C3120.3 (3)C25—C24—C23120.4 (2)
C5—C4—H4119.9C25—C24—H24119.8
C3—C4—H4119.9C23—C24—H24119.8
C6—C5—C4119.9 (2)C26—C25—C24120.4 (2)
C6—C5—H5120.1C26—C25—H25119.8
C4—C5—H5120.1C24—C25—H25119.8
C5—C6—C7120.5 (3)C25—C26—C27119.9 (2)
C5—C6—H6119.8C25—C26—H26120.1
C7—C6—H6119.8C27—C26—H26120.1
C2—C7—C6121.0 (3)C22—C27—C26120.3 (2)
C2—C7—H7119.5C22—C27—H27119.9
C6—C7—H7119.5C26—C27—H27119.9
C9—C8—C13117.49 (18)C29—C28—C33117.15 (15)
C9—C8—N1120.5 (2)C29—C28—N2121.70 (16)
C13—C8—N1122.0 (2)C33—C28—N2121.06 (16)
C10—C9—C8122.3 (2)C30—C29—C28121.88 (18)
C10—C9—Cl1119.2 (2)C30—C29—Cl3119.07 (15)
C8—C9—Cl1118.51 (16)C28—C29—Cl3119.05 (13)
C11—C10—C9118.8 (3)C31—C30—C29119.13 (19)
C11—C10—H10120.6C31—C30—H30120.4
C9—C10—H10120.6C29—C30—H30120.4
C10—C11—C12120.9 (2)C30—C31—C32120.99 (18)
C10—C11—H11119.6C30—C31—H31119.5
C12—C11—H11119.6C32—C31—H31119.5
C11—C12—C13119.8 (3)C31—C32—C33119.3 (2)
C11—C12—H12120.1C31—C32—H32120.4
C13—C12—H12120.1C33—C32—H32120.4
C8—C13—C12120.7 (2)C32—C33—C28121.57 (18)
C8—C13—Cl2119.53 (16)C32—C33—Cl4119.47 (16)
C12—C13—Cl2119.8 (2)C28—C33—Cl4118.95 (14)
C1—N1—C8121.29 (14)C21—N2—C28123.19 (14)
C1—N1—H1N119.9 (14)C21—N2—H2N121.5 (13)
C8—N1—H1N117.2 (15)C28—N2—H2N115.3 (13)
O1—C1—C2—C330.4 (3)O2—C21—C22—C23−34.2 (3)
N1—C1—C2—C3−150.5 (2)N2—C21—C22—C23145.9 (2)
O1—C1—C2—C7−148.3 (2)O2—C21—C22—C27144.2 (2)
N1—C1—C2—C730.8 (3)N2—C21—C22—C27−35.7 (3)
C7—C2—C3—C43.0 (4)C27—C22—C23—C24−0.2 (4)
C1—C2—C3—C4−175.7 (3)C21—C22—C23—C24178.3 (2)
C2—C3—C4—C50.2 (5)C22—C23—C24—C25−0.8 (4)
C3—C4—C5—C6−3.3 (5)C23—C24—C25—C261.0 (5)
C4—C5—C6—C73.0 (5)C24—C25—C26—C27−0.4 (4)
C3—C2—C7—C6−3.3 (4)C23—C22—C27—C260.9 (3)
C1—C2—C7—C6175.4 (2)C21—C22—C27—C26−177.54 (18)
C5—C6—C7—C20.4 (4)C25—C26—C27—C22−0.6 (3)
C13—C8—C9—C101.5 (3)C33—C28—C29—C30−1.4 (3)
N1—C8—C9—C10−176.03 (18)N2—C28—C29—C30175.06 (16)
C13—C8—C9—Cl1−176.52 (14)C33—C28—C29—Cl3178.37 (13)
N1—C8—C9—Cl15.9 (2)N2—C28—C29—Cl3−5.1 (2)
C8—C9—C10—C11−1.0 (3)C28—C29—C30—C311.2 (3)
Cl1—C9—C10—C11177.08 (18)Cl3—C29—C30—C31−178.63 (16)
C9—C10—C11—C120.3 (4)C29—C30—C31—C32−0.3 (3)
C10—C11—C12—C13−0.3 (4)C30—C31—C32—C33−0.3 (3)
C9—C8—C13—C12−1.5 (3)C31—C32—C33—C280.0 (3)
N1—C8—C13—C12176.04 (18)C31—C32—C33—Cl4−179.03 (16)
C9—C8—C13—Cl2179.02 (14)C29—C28—C33—C320.8 (3)
N1—C8—C13—Cl2−3.4 (2)N2—C28—C33—C32−175.69 (17)
C11—C12—C13—C80.9 (3)C29—C28—C33—Cl4179.88 (12)
C11—C12—C13—Cl2−179.60 (17)N2—C28—C33—Cl43.4 (2)
O1—C1—N1—C8−8.5 (3)O2—C21—N2—C28−5.4 (3)
C2—C1—N1—C8172.35 (18)C22—C21—N2—C28174.49 (16)
C9—C8—N1—C1−84.0 (2)C29—C28—N2—C2198.8 (2)
C13—C8—N1—C198.5 (2)C33—C28—N2—C21−84.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.860 (19)2.09 (2)2.9035 (18)158 (2)
N2—H2N···O1i0.843 (18)2.060 (19)2.8831 (18)165.1 (19)

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2209).

References

  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  • Gowda, B. T., Sowmya, B. P., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007a). Acta Cryst. E63, o2906.
  • Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007b). Acta Cryst. E63, o3326.
  • Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007c). Acta Cryst. E63, o3365.
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o462. [PMC free article] [PubMed]
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography