PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m353–m354.
Published online 2008 January 16. doi:  10.1107/S160053680706535X
PMCID: PMC2960173

Dichlorido{2-hydroxy­imino-N′-[1-(2-pyrid­yl)ethyl­idene]propanohydrazide-κ3 N,N′,O}zinc(II) hemihydrate

Abstract

The title compound, [ZnCl2(C10H12N4O2)]·0.5H2O, was readily prepared by the reaction between ZnCl2 and 2-hydroxy­imino-N′-[1-(2-pyrid­yl)ethyl­idene]propanohydrazide. The Zn atom has a distorted trigonal–bipyramidal geometry with two Cl atoms and one azomethine N atom in the equatorial plane and one pyridine N atom and one amide O atom in the axial positions. In the crystal structure, complex mol­ecules are connected in pairs by N—H(...)Cl hydrogen bonds, formed between the amide NH of one mol­ecule and the Cl atom of a neighboring one. Mol­ecular pairs are connected by hydrogen bonds involving the uncoordinated water mol­ecule, which lies on a twofold axis.

Related literature

For details of the structure and biological activity of zinc(II) complexes, see: Canary et al. (1998 [triangle]); Comba et al. (2002 [triangle]); Kasuga et al. (2003 [triangle]); Panosyan et al. (2003 [triangle]); Rodriuez-Argüelles et al. (1995 [triangle]); Sousa et al. (2003 [triangle]). For the preparation of 2-(oximato)propane­hydrazide, see: Fritsky et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m353-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C10H12N4O2)]·0.5H2O
  • M r = 365.51
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m353-efi1.jpg
  • a = 14.5666 (8) Å
  • b = 12.9898 (8) Å
  • c = 15.8671 (8) Å
  • β = 109.873 (5)°
  • V = 2823.5 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 2.13 mm−1
  • T = 100 (2) K
  • 0.5 × 0.1 × 0.05 mm

Data collection

  • Kuma KM-4 CCD area-detector diffractometer
  • Absorption correction: multi-scan (PLATON; Spek, 2003 [triangle]) T min = 0.774, T max = 0.891
  • 17382 measured reflections
  • 3373 independent reflections
  • 3069 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.070
  • S = 1.21
  • 3373 reflections
  • 191 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: KM-4 CCD Software (Kuma, 1999 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680706535X/hy2108sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706535X/hy2108Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to NATO for financial support (grant CBP. NUKR. CLG 982019).

supplementary crystallographic information

Comment

In the past few decades mononuclear zinc(II) complexes attract a lot of attention because of their biological and catalytical activity (Kasuga et al., 2003; Panosyan et al., 2003; Rodriuez-Argüelles et al., 1995; Sousa et al., 2003). On the other hand, many zinc mononuclear complexes containing additional vacant donor sets and chelate centers are taken as ligands for building of homo- and heteropolynuclear systems, which are widely used in bioinorganic modeling and catalysis. The properties of the obtained compounds are closely connected with their structure, so the best results one could obtain using well designed ligand systems. We report here the synthesis and structure of a zinc complex, [ZnCl2(C10H12N4O2)].0.5H2O, based on a novel polynucleative ligand 2-(oximato)-N'-(1-(pyridin-2-yl)ethylidene)propanehydrazide (L).

The title compound consists of neutral complex molecules and solvated water molecules (Fig. 1). The Zn atom has a distorted trigonal-bipyramidal geometry, defined by two Cl atoms and one azomethine N atom at the equatorial plane and a pyridine N atom and an amide O atom at the axial positions. The Zn—N, Zn—O and Zn—Cl bond lengths are comparable to previously reported zinc complexes with thiosemicarbasone and semicarbasone derivatives (Kasuga et al., 2003) and with pyridine complexed to the metal ion (Canary et al., 1998; Comba et al., 2002) (Table 1). The bite angles around the central atom deviate from an ideal square-planar configuration [e.g. N2—Zn1—O1 = 72.57 (6)°, N2—Zn1—N1 = 74.71 (7)°], that is a consequence of the formation of two almost flat five-membered chelate rings. In the crystal packing, the molecules are connected in pairs by N—H···Cl hydrogen bonds (Fig. 2), where the protonated amide group from one molecule acts as a donor and the Cl atom from the neighboring molecule as an acceptor (Table 2). The weak π-stacking interaction is observed between the pyridine ring and oximic group. The molecular pairs are connected to each other by hydrogen bonds involving the solvated water molecules, resulting in an extensive three-dimensional system (Fig. 3).

Experimental

2-(Oximato)-N'-(1-(pyridin-2-yl)ethylidene)propanehydrazide (L) was prepared according to early reported method (Fritsky et al., 1998). 2-Acetylpyridine (1.2 ml, 0.0107 mol) was added to a stirred warm ethanol/water solution (20 ml) of 2-(oximato)propanehydrazide (1.17 g, 0.01 mol). After stirring at 333 k for 6 h, the solution was cooled and a white precipitate was formed immediately. It was filtered off, washed with water and acetone and dried under vacuum (yield 72%, 1.59 g). 1H NMR, 400.13 MHz, (DMSO-d6): 12.118 (s, 1H, N—OH), 10.242 (s, 1H, NH), 8.608 (dt, 1H, py-6, J6,5 = 4.8 Hz, J6,4 = 1.8 Hz), 8.066 (d, 1H, py-3, J3,4 = 7.8 Hz), 7.861 (td, 1H, py-4, J4,5,3 = 7.8 Hz, J4,6 = 1.8 Hz), 7.415 (ddd, 1H, py-5, J5,6 = 4.8 Hz, J5,4 = 7.8 Hz, J = 1.2 Hz), 2.376 (s, 3H, CH3(py)), 1.985(s, 3H, CH3). IR (KBr, cm-1): 1660 (COamid), 1030 (NOoxim), 3340 (NHas). Analysis calculated for C10H12N4O2: C 54.54, H 5.49, N 25.44%; found: C 54.41, H 5.62, N 25.42%.

Zinc(II) chloride (0.014 g, 0.1 mmol) in H2O (5 ml) was added to 10 ml of hot methanol solution of L (0.022 g, 0.1 mmol). The solution was left for slow evaporation at room temperature. After 5 days cubic crystals of the title compound suitable for X-ray analysis were obtained.

Refinement

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å (CH) and 0.96Å (CH3), and with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl group. H atoms on N and O atoms were located from a difference Fourier map and were refined isotropically.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are shown at the 40% probability level. Water molecule is not shown.
Fig. 2.
A view of a pair of the complex molecules. Displacement ellipsoids are shown at the 40% probability level. Hydrogen bonds are indicated by dashed lines.
Fig. 3.
A packing diagram of the title compound along the b-axis direction. Hydrogen bonds are indicated by dashed lines. H atoms have been omitted for clarity.

Crystal data

[ZnCl2(C10H12N4O2)]·0.5H2OF000 = 1480
Mr = 365.51Dx = 1.720 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3373 reflections
a = 14.5666 (8) Åθ = 3.1–28.5º
b = 12.9898 (8) ŵ = 2.13 mm1
c = 15.8671 (8) ÅT = 100 (2) K
β = 109.873 (5)ºCubic, yellow
V = 2823.5 (3) Å30.5 × 0.1 × 0.05 mm
Z = 8

Data collection

Kum KM4 CCD area-detector diffractometer3373 independent reflections
Radiation source: fine-focus sealed tube3069 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.043
T = 100(2) Kθmax = 28.5º
ω scansθmin = 3.1º
Absorption correction: multi-scan(PLATON; Spek, 2003)h = −19→19
Tmin = 0.774, Tmax = 0.891k = −16→16
17382 measured reflectionsl = −20→21

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070  w = 1/[σ2(Fo2) + (0.0282P)2 + 3.185P] where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max = 0.002
3373 reflectionsΔρmax = 0.45 e Å3
191 parametersΔρmin = −0.37 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.8446 (2)0.45584 (19)0.90460 (16)0.0300 (6)
H1A0.88490.39580.92250.045*
H1B0.85000.48270.85010.045*
H1C0.77780.43780.89490.045*
C20.87720 (17)0.53560 (17)0.97658 (14)0.0155 (4)
C30.86291 (17)0.64543 (17)0.95017 (14)0.0149 (4)
C40.89866 (16)0.89516 (17)1.03894 (14)0.0127 (4)
C50.96032 (18)0.89213 (18)1.13564 (14)0.0187 (5)
H5A0.99370.82721.14900.028*
H5B0.91970.90031.17180.028*
H5C1.00730.94691.14830.028*
C60.86661 (16)0.99579 (17)0.99301 (14)0.0124 (4)
C70.89136 (17)1.08943 (18)1.03628 (15)0.0163 (5)
H70.92931.09211.09670.020*
C80.85855 (19)1.17985 (18)0.98807 (16)0.0194 (5)
H80.87451.24371.01570.023*
C90.80194 (19)1.17314 (18)0.89857 (16)0.0203 (5)
H90.77881.23230.86500.024*
C100.78027 (17)1.07659 (18)0.85973 (15)0.0181 (5)
H100.74241.07220.79940.022*
N10.81153 (14)0.98950 (15)0.90538 (12)0.0140 (4)
N20.86837 (14)0.81687 (14)0.98712 (12)0.0127 (4)
N30.88998 (14)0.71758 (14)1.01651 (13)0.0144 (4)
N40.91703 (14)0.51964 (14)1.06044 (12)0.0161 (4)
O10.82753 (14)0.67055 (12)0.87067 (10)0.0213 (4)
O20.92836 (13)0.41557 (13)1.08008 (11)0.0211 (4)
Cl20.88241 (4)0.85938 (4)0.75864 (3)0.01726 (13)
Cl30.63307 (4)0.81753 (5)0.78506 (4)0.01874 (13)
Zn10.793127 (19)0.838156 (19)0.848619 (16)0.01239 (8)
H10.954 (3)0.413 (3)1.139 (2)0.048 (10)*
O1W0.00000.34448 (19)0.25000.0206 (5)
H1W0.045 (2)0.308 (3)0.250 (2)0.048 (11)*
H20.905 (2)0.699 (2)1.068 (2)0.024 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0471 (17)0.0123 (12)0.0180 (12)−0.0014 (11)−0.0052 (11)−0.0005 (9)
C20.0178 (11)0.0114 (11)0.0162 (11)−0.0004 (9)0.0045 (9)0.0004 (8)
C30.0163 (11)0.0135 (11)0.0150 (10)−0.0008 (9)0.0054 (9)−0.0011 (8)
C40.0134 (11)0.0124 (11)0.0129 (10)−0.0022 (8)0.0054 (8)−0.0001 (8)
C50.0235 (13)0.0145 (12)0.0138 (10)−0.0020 (9)0.0005 (9)0.0002 (9)
C60.0122 (10)0.0130 (11)0.0135 (10)0.0006 (8)0.0063 (8)0.0016 (8)
C70.0181 (12)0.0163 (11)0.0141 (10)−0.0019 (9)0.0050 (9)−0.0016 (8)
C80.0256 (13)0.0108 (11)0.0220 (12)−0.0017 (9)0.0086 (10)−0.0027 (9)
C90.0243 (13)0.0140 (12)0.0211 (12)0.0019 (9)0.0058 (10)0.0033 (9)
C100.0196 (12)0.0179 (12)0.0152 (11)0.0031 (9)0.0039 (9)0.0019 (9)
N10.0153 (9)0.0132 (9)0.0130 (9)−0.0003 (7)0.0042 (7)−0.0008 (7)
N20.0150 (9)0.0103 (9)0.0130 (9)0.0011 (7)0.0051 (7)0.0016 (7)
N30.0202 (10)0.0115 (9)0.0097 (9)−0.0001 (8)0.0028 (8)0.0021 (7)
N40.0208 (10)0.0103 (9)0.0169 (9)0.0011 (8)0.0062 (8)0.0019 (7)
O10.0333 (10)0.0136 (8)0.0122 (7)0.0026 (7)0.0015 (7)0.0002 (6)
O20.0322 (10)0.0126 (8)0.0164 (8)0.0014 (7)0.0054 (7)0.0043 (6)
Cl20.0152 (3)0.0210 (3)0.0172 (3)−0.0004 (2)0.0076 (2)−0.0007 (2)
Cl30.0154 (3)0.0255 (3)0.0158 (3)−0.0057 (2)0.0059 (2)−0.0026 (2)
Zn10.01436 (14)0.01195 (13)0.01015 (12)−0.00066 (10)0.00323 (9)−0.00064 (9)
O1W0.0272 (14)0.0137 (12)0.0202 (12)0.0000.0070 (11)0.000

Geometric parameters (Å, °)

C1—C21.495 (3)C7—H70.9300
C1—H1A0.9600C8—C91.381 (3)
C1—H1B0.9600C8—H80.9300
C1—H1C0.9600C9—C101.386 (3)
C2—N41.275 (3)C9—H90.9300
C2—C31.482 (3)C10—N11.337 (3)
C3—O11.233 (3)C10—H100.9300
C3—N31.364 (3)Zn1—N12.1409 (19)
C4—N21.288 (3)N2—N31.371 (3)
C4—C51.492 (3)Zn1—N22.1142 (18)
C4—C61.492 (3)N3—H20.80 (3)
C5—H5A0.9600N4—O21.384 (2)
C5—H5B0.9600Zn1—O12.2348 (16)
C5—H5C0.9600O2—H10.88 (3)
C6—N11.351 (3)Zn1—Cl22.2513 (6)
C6—C71.383 (3)Zn1—Cl32.2195 (6)
C7—C81.394 (3)O1W—H1W0.81 (3)
C2—C1—H1A109.5C7—C8—H8120.5
C2—C1—H1B109.5C8—C9—C10118.7 (2)
H1A—C1—H1B109.5C8—C9—H9120.6
C2—C1—H1C109.5C10—C9—H9120.6
H1A—C1—H1C109.5N1—C10—C9122.7 (2)
H1B—C1—H1C109.5N1—C10—H10118.6
N4—C2—C3115.0 (2)C9—C10—H10118.6
N4—C2—C1126.8 (2)C10—N1—C6118.69 (19)
C3—C2—C1118.27 (19)C10—N1—Zn1125.33 (15)
O1—C3—N3121.2 (2)C6—N1—Zn1115.73 (15)
O1—C3—C2120.9 (2)C4—N2—N3122.44 (18)
N3—C3—C2117.88 (19)C4—N2—Zn1120.30 (15)
N2—C4—C5126.3 (2)N3—N2—Zn1117.03 (13)
N2—C4—C6113.42 (18)C3—N3—N2114.28 (18)
C5—C4—C6120.29 (19)C3—N3—H2119 (2)
C4—C5—H5A109.5N2—N3—H2125 (2)
C4—C5—H5B109.5C2—N4—O2111.77 (18)
H5A—C5—H5B109.5C3—O1—Zn1114.29 (14)
C4—C5—H5C109.5N4—O2—H1104 (2)
H5A—C5—H5C109.5N2—Zn1—N174.71 (7)
H5B—C5—H5C109.5N2—Zn1—Cl3123.36 (5)
N1—C6—C7121.8 (2)N1—Zn1—Cl3105.30 (5)
N1—C6—C4115.30 (19)N2—Zn1—O172.57 (6)
C7—C6—C4122.86 (19)N1—Zn1—O1147.07 (6)
C6—C7—C8119.1 (2)Cl3—Zn1—O195.66 (5)
C6—C7—H7120.5N2—Zn1—Cl2117.91 (5)
C8—C7—H7120.5N1—Zn1—Cl297.91 (5)
C9—C8—C7119.0 (2)Cl3—Zn1—Cl2118.08 (2)
C9—C8—H8120.5O1—Zn1—Cl294.10 (5)
N4—C2—C3—O1178.0 (2)Zn1—N2—N3—C32.7 (2)
C1—C2—C3—O1−2.0 (4)C3—C2—N4—O2−179.79 (19)
N4—C2—C3—N3−2.1 (3)C1—C2—N4—O20.2 (4)
C1—C2—C3—N3177.9 (2)N3—C3—O1—Zn1−8.3 (3)
N2—C4—C6—N10.0 (3)C2—C3—O1—Zn1171.56 (16)
C5—C4—C6—N1179.6 (2)C4—N2—Zn1—N1−6.55 (17)
N2—C4—C6—C7−179.8 (2)N3—N2—Zn1—N1178.85 (17)
C5—C4—C6—C7−0.1 (3)C4—N2—Zn1—Cl3−105.03 (17)
N1—C6—C7—C80.0 (3)N3—N2—Zn1—Cl380.36 (16)
C4—C6—C7—C8179.7 (2)C4—N2—Zn1—O1169.73 (19)
C6—C7—C8—C90.3 (4)N3—N2—Zn1—O1−4.88 (15)
C7—C8—C9—C10−0.4 (4)C4—N2—Zn1—Cl284.41 (17)
C8—C9—C10—N10.3 (4)N3—N2—Zn1—Cl2−90.20 (15)
C9—C10—N1—C6−0.1 (3)C10—N1—Zn1—N2−179.8 (2)
C9—C10—N1—Zn1−173.99 (18)C6—N1—Zn1—N26.09 (15)
C7—C6—N1—C10−0.1 (3)C10—N1—Zn1—Cl3−58.74 (19)
C4—C6—N1—C10−179.9 (2)C6—N1—Zn1—Cl3127.17 (14)
C7—C6—N1—Zn1174.42 (17)C10—N1—Zn1—O1173.63 (16)
C4—C6—N1—Zn1−5.4 (2)C6—N1—Zn1—O1−0.5 (2)
C5—C4—N2—N30.4 (3)C10—N1—Zn1—Cl263.31 (19)
C6—C4—N2—N3179.97 (19)C6—N1—Zn1—Cl2−110.78 (15)
C5—C4—N2—Zn1−173.95 (18)C3—O1—Zn1—N26.96 (17)
C6—C4—N2—Zn15.7 (3)C3—O1—Zn1—N113.6 (2)
O1—C3—N3—N24.1 (3)C3—O1—Zn1—Cl3−116.27 (17)
C2—C3—N3—N2−175.80 (19)C3—O1—Zn1—Cl2124.96 (17)
C4—N2—N3—C3−171.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H2···Cl3i0.80 (3)2.59 (3)3.310 (2)150 (3)
O1W—H1W···Cl2ii0.81 (3)2.44 (3)3.182 (2)153 (3)
O2—H1···O1Wiii0.88 (3)1.89 (4)2.7015 (19)153 (3)

Symmetry codes: (i) −x+3/2, −y+3/2, −z+2; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2108).

References

  • Bruker (1999). SAINT Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Canary, J. W., Allen, C. S., Castagnetto, J. M., Chiu, Y. H., Toscano, P. J. & Wang, Y. H. (1998). Inorg. Chem.37, 6255–6262.
  • Comba, P., Kerscher, M., Merz, M., Muller, V., Pritzkow, H., Remenyi, R., Schiek, W. & Xiong, Y. (2002). Chem. Eur. J.8, 5750–5760. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Glowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.
  • Kasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, S. & Nomiya, K. (2003). J. Inorg. Biochem.96, 298–310. [PubMed]
  • Kuma (1999). KM-4 CCD Software Version 1.61. Kuma Diffraction, Wrocław, Poland.
  • Panosyan, F. B., Lough, A. J. & Chin, J. (2003). Acta Cryst. E59, m827–m829.
  • Rodriuez-Argüelles, M. C., Ferrari, M. B., Fava, G. G., Pelizzi, C., Tarasconi, P., Albertini, R., Dall’Aglio, P. P., Lunghi, P. & Pinelli, S. (1995). J. Inorg. Biochem.58, 157–175. [PubMed]
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sousa, G. F. de & Deflon, V. M. (2003). Transition Met. Chem.28, 74–78.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography