PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m282–m283.
Published online 2008 January 4. doi:  10.1107/S1600536807067852
PMCID: PMC2960168

Aqua­(4-methyl­quinoline-κN)[N-(2-oxidobenzyl­idene)glycinato-κ3 O,N,O′]copper(II) hemihydrate

Abstract

The title complex, [Cu(C9H7NO3)(C10H9N)(H2O)]·0.5H2O, crystallizes with two independent formula units in the asymmetric unit; the solvent mol­ecule is located on a twofold axis of symmetry. The CuII atom is coordinated by one tridentate N-salicylideneglycinate Schiff base ligand, one 4-methyl­quinoline ligand and one water mol­ecule, leading to a slightly distorted square-pyramidal N2O3 geometry. In the crystal structure, the mol­ecules are linked by O—H(...)O hydrogen bonds into linear chains in the [100] direction. The structure is further stabilized by inter­molecular C—H(...)O inter­actions and C(...)C contacts with C(...)C = 3.3058 (2), 3.3636 (2) and 3.3946 (2) Å.

Related literature

For synthesis, see: Kishita et al. (1964 [triangle]). For related literature, see: Katsuki (2003 [triangle]); Vančo et al. (2004 [triangle], 2008 [triangle]); Bauerová et al. (2005 [triangle]). For related structures, see: Valent et al. (2002 [triangle]); Warda (1998a [triangle],b [triangle],c [triangle],d [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m282-scheme1.jpg

Experimental

Crystal data

  • [Cu(C9H7NO3)(C10H9N)(H2O)]·0.5H2O
  • M r = 410.9
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m282-efi3.jpg
  • a = 10.0966 (7) Å
  • b = 12.3483 (6) Å
  • c = 28.8133 (17) Å
  • β = 97.730 (6)°
  • V = 3559.7 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.26 mm−1
  • T = 120 (2) K
  • 0.30 × 0.25 × 0.25 mm

Data collection

  • Kuma KM-4-CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.690, T max = 0.729
  • 19645 measured reflections
  • 6242 independent reflections
  • 4225 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.113
  • S = 1.09
  • 6242 reflections
  • 499 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.66 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067852/tk2236sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067852/tk2236Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support of this work by the Ministry of Education, Youth and Sports of the Czech Republic (grant Nos. MSM6198959218, MSM0021622415 and MSM6215712403) and the Scientific Grant Agency of the Ministry of Education of the Slovak Republic (grant No. VEGA 1/3416/06) is gratefully acknowledged.

supplementary crystallographic information

Comment

Schiff bases, as condensation products of carbonyls and amines, and their coordination compounds find their utilization in different branches of chemical technology (Katsuki, 2003) and participate in some biochemical pathways, e.g. transamination processes, catalyzed by metalloenzymes.

In connection with our recent studies on copper and zinc salicylidene-derived Schiff base complexes, we report now the structure of (I). The Schiff base (Salgly) ligand represents a condensation product of salicylaldehyde and glycine. The title complex, in the form of an anhydrous compound, showed significant microbistatic and fungistatic effects (Valent et al., 2002). Moreover, similar compounds derived from different N-salicylideneamino acids have been intensively studied and showed some remarkable biological features, from which the antioxidant (Vančo et al., 2008), antiflogistic, antirheumatic (Bauerová et al., 2005), or antidiabetic activities (Vančo et al., 2004) could be considered as the most interesting.

To date, only four X-ray structures of monomeric copper(II) complexes involving the aqua-(N-salicylideneglycinato-κO,N,O')copper(II) moiety in combination with another N-donor ligand, i.e. an alkylated pyridine derivative, have been reported (Warda, 1998a-d). While the present structure is the first one with two-ring one-N-donor aromatic ligand, i.e. 4-methylquinoline (Mqui), there are similarities in the interatomic parameters defining the coordination of the central atom in these complexes.

Two independent formula units of Cu(Salgly)(Mqui)(H2O).1/2(H2O) comprise the asymmetric unit of (I), see Fig. 1; each of the solvent water molecules lies on a 2-fold axis. Each CuII atom is chelated by two N atoms and a O atom, derived from the Salgly ligand, one N atom from the Mqui ligand. The resultant penta-coordinated geometry is completed by a water molecule. The O atom of the latter ligand occupies an apical position in a slightly distorted square-pyramidal coordination geometry [τ = 0.102 (for Cu1) and 0.091 (for Cu2)]. The bond distances of Cu—Nazomethine [1.927 (3) and 1.926 (3) Å], Cu—Nimine [1.993 (3) and 1.982 (3) Å], Cu—Ocarboxy [1.986 (3) and 1.982 (3) Å], Cu—Ophenoxy [1.910 (3) and 1.909 (3) Å] and Cu—Owater [2.371 (3) and 2.367 (3) Å] as well as Ocarboxy—Cu—Ophenoxy [166.61 (12) and 166.81 (12) °] and Nazomethine—Cu—Nimine [172.74 (14) and 172.24 (14) °] bond angles are quite similar in the independent complex molecules.

The primary intermolecular contacts in the crystal structure are of the type O—H···O (Fig. 2 & Table 1) and involve both coordinated and free water molecules, and both O atoms of carboxy groups, joining them into linear chains in the [100] direction. Moreover, the secondary structure is stabilized by intermolecular C—H···O interactions and C···C contacts (Fig. 3).

Experimental

The title complex, (I), was prepared by the reaction of an ethanol/water solution (2:1, v/v) of aqua-(N-salicylideneglycinato)copper(II) hemihydrate (Kishita et al., 1964) with an ethanolic solution of 4-methylquinoline in the molar ratio of 1:4. The reaction mixture was stirred at 60 °C for 30 minutes. After cooling overnight, well developed single crystals of (I) suitable for X-ray analysis were isolated.

Refinement

C-bound H-atoms were included in the riding model approximation with C–H distances of 0.95 Å (Caromatic), 0.98 Å (CH3) and 0.99 Å (CH2), and with Uiso(H) values of 1.2Ueq(CH2, Caromatic) or 1.5Ueq(Cmethyl). The O-bound H atoms were refined, with the O—H distances restrained to 0.90 (2) Å and with Uiso(H) values of 1.5Ueq(Owater); distances are given in Table 1.

Figures

Fig. 1.
The molecular structures of the independent complex and water molecules in (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
Part of the crystal structure of (I), showing the formation of O—H···O hydrogen bonds as dashed lines [Symmetry codes: (ii) -x + 1, y, -z + 1/2; (iii) -x, y, -z + 1/2].
Fig. 3.
Part of the crystal structure of (I), showing the formation of intermolecular C—H···O interactions (dashed lines) and C···C contacts (dashed lines) with C102···O3i = 3.6974 (2), ...

Crystal data

[Cu(C9H7NO3)(C10H9N)(H2O)]·0.5H2OF000 = 1696
Mr = 410.9Dx = 1.533 Mg m3
Monoclinic, P2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 3906 reflections
a = 10.0966 (7) Åθ = 2.6–26.5º
b = 12.3483 (6) ŵ = 1.26 mm1
c = 28.8133 (17) ÅT = 120 (2) K
β = 97.730 (6)ºPrism, blue
V = 3559.7 (4) Å30.30 × 0.25 × 0.25 mm
Z = 8

Data collection

Kuma KM-4-CCD diffractometer6242 independent reflections
Radiation source: fine-focus sealed tube4225 reflections with I > 2σ(I)
Monochromator: Enhance (Oxford Diffraction)Rint = 0.049
Detector resolution: 8.3611 pixels mm-1θmax = 25.0º
T = 120(2) Kθmin = 3.2º
rotation method ω scansh = −12→11
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2006)k = −14→13
Tmin = 0.690, Tmax = 0.729l = −34→34
19645 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113  w = 1/[σ2(Fo2) + (0.04P)2 + 2.5P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
6242 reflectionsΔρmax = 0.66 e Å3
499 parametersΔρmin = −0.54 e Å3
6 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.64949 (5)0.89277 (4)0.146484 (18)0.01660 (15)
Cu20.14540 (5)0.52717 (4)0.145347 (17)0.01668 (15)
O10.4892 (3)0.8873 (2)0.17954 (9)0.0175 (7)
O20.3605 (3)0.7712 (2)0.21210 (9)0.0198 (7)
O30.7735 (3)0.8959 (2)0.10193 (10)0.0212 (7)
O40.7828 (3)0.8607 (2)0.21941 (10)0.0199 (7)
H4V0.802 (4)0.7916 (18)0.2171 (15)0.030*
H4W0.733 (4)0.854 (4)0.2415 (12)0.030*
O101−0.0123 (3)0.5325 (2)0.17948 (9)0.0179 (7)
O102−0.1400 (3)0.6477 (2)0.21334 (9)0.0208 (7)
O1030.2671 (3)0.5247 (2)0.10008 (10)0.0221 (7)
O1040.2815 (3)0.5589 (2)0.21757 (10)0.0195 (7)
H4Y0.323 (4)0.621 (2)0.2148 (15)0.029*
H4Z0.231 (4)0.572 (4)0.2391 (12)0.029*
C10.4519 (4)0.7919 (3)0.18899 (13)0.0168 (9)
C20.5282 (4)0.6981 (3)0.17115 (14)0.0170 (9)
H2A0.58030.66020.19790.020*
H2B0.46460.64580.15430.020*
N30.6186 (3)0.7393 (3)0.13948 (11)0.0142 (8)
C40.6656 (4)0.6760 (3)0.11074 (14)0.0195 (10)
H40.63880.60220.11060.023*
C50.7556 (4)0.7073 (3)0.07865 (13)0.0179 (9)
C60.8021 (4)0.8155 (4)0.07522 (14)0.0214 (10)
C70.8874 (4)0.8365 (4)0.04121 (15)0.0248 (10)
H70.91840.90820.03750.030*
C80.9263 (5)0.7556 (4)0.01340 (16)0.0308 (12)
H80.98390.7725−0.00910.037*
C90.8833 (5)0.6487 (4)0.01734 (15)0.0306 (12)
H90.91210.5929−0.00170.037*
C100.7983 (4)0.6271 (4)0.04955 (15)0.0264 (11)
H100.76720.55500.05220.032*
N110.6567 (3)1.0531 (3)0.15411 (11)0.0175 (8)
C120.7484 (4)1.0987 (3)0.18422 (14)0.0184 (10)
H120.81341.05330.20140.022*
C130.7568 (4)1.2106 (4)0.19281 (15)0.0237 (10)
H130.82641.23900.21500.028*
C140.6646 (4)1.2783 (3)0.16915 (15)0.0225 (10)
C150.5640 (4)1.2326 (3)0.13509 (14)0.0200 (10)
C160.5637 (4)1.1192 (3)0.12792 (13)0.0179 (9)
C170.4669 (4)1.0718 (4)0.09435 (15)0.0258 (11)
H170.46730.99580.08920.031*
C180.3730 (5)1.1347 (4)0.06929 (16)0.0321 (12)
H180.30761.10230.04680.039*
C190.3712 (5)1.2475 (4)0.07621 (17)0.0336 (12)
H190.30541.29070.05820.040*
C200.4634 (4)1.2946 (4)0.10850 (16)0.0272 (11)
H200.46031.37060.11330.033*
C210.6709 (5)1.3984 (3)0.17792 (18)0.0366 (13)
H21A0.74181.41420.20370.055*
H21B0.58501.42350.18620.055*
H21C0.69001.43590.14960.055*
C101−0.0500 (4)0.6277 (3)0.18915 (14)0.0173 (9)
C1020.0258 (4)0.7220 (3)0.17074 (13)0.0175 (9)
H10A−0.03820.77510.15470.021*
H10B0.08060.75910.19710.021*
N1030.1120 (3)0.6801 (3)0.13791 (11)0.0159 (8)
C1040.1625 (4)0.7452 (3)0.11094 (13)0.0174 (9)
H1040.13740.81930.11170.021*
C1050.2556 (4)0.7147 (3)0.07917 (14)0.0192 (10)
C1060.3004 (4)0.6060 (3)0.07514 (14)0.0184 (10)
C1070.3904 (4)0.5879 (4)0.04231 (14)0.0225 (10)
H1070.41980.51620.03750.027*
C1080.4363 (4)0.6710 (4)0.01733 (15)0.0258 (11)
H1080.49820.6555−0.00390.031*
C1090.3949 (4)0.7773 (4)0.02211 (15)0.0260 (11)
H1090.42820.83430.00480.031*
C1100.3047 (4)0.7971 (4)0.05253 (14)0.0233 (10)
H1100.27430.86920.05580.028*
N1110.1532 (3)0.3675 (3)0.15199 (11)0.0135 (7)
C1120.2498 (4)0.3203 (3)0.18149 (14)0.0186 (10)
H1120.31610.36530.19820.022*
C1130.2587 (4)0.2090 (3)0.18907 (14)0.0212 (10)
H1130.33030.18050.21030.025*
C1140.1658 (5)0.1406 (4)0.16633 (15)0.0227 (10)
C1150.0611 (4)0.1873 (3)0.13443 (14)0.0201 (10)
C1160.0567 (4)0.3009 (3)0.12845 (14)0.0184 (10)
C117−0.0458 (4)0.3493 (4)0.09754 (14)0.0204 (10)
H117−0.04680.42560.09320.024*
C118−0.1436 (4)0.2872 (4)0.07372 (15)0.0275 (11)
H118−0.21330.32050.05320.033*
C119−0.1422 (5)0.1741 (4)0.07931 (15)0.0272 (11)
H119−0.21110.13130.06270.033*
C120−0.0422 (4)0.1257 (4)0.10848 (15)0.0250 (11)
H120−0.04150.04910.11150.030*
C1210.1741 (5)0.0218 (4)0.17441 (18)0.0360 (13)
H12A0.24790.00590.19920.054*
H12B0.1897−0.01470.14540.054*
H12C0.0900−0.00400.18400.054*
O50.00000.3678 (4)0.25000.0289 (11)
H5V0.005 (5)0.412 (3)0.2745 (11)0.043*
O60.50001.0521 (4)0.25000.0267 (10)
H6V0.486 (5)1.010 (3)0.2254 (11)0.040*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0187 (3)0.0130 (3)0.0189 (3)−0.0010 (2)0.0059 (2)−0.0003 (2)
Cu20.0200 (3)0.0126 (3)0.0184 (3)0.0014 (2)0.0060 (2)0.0005 (2)
O10.0172 (16)0.0111 (15)0.0255 (17)−0.0003 (12)0.0073 (13)−0.0005 (13)
O20.0188 (17)0.0211 (16)0.0210 (16)−0.0043 (13)0.0081 (13)−0.0015 (13)
O30.0272 (18)0.0169 (16)0.0217 (16)−0.0041 (13)0.0112 (13)−0.0035 (13)
O40.0220 (17)0.0182 (16)0.0200 (16)0.0005 (14)0.0051 (13)0.0009 (14)
O1010.0201 (16)0.0128 (16)0.0217 (16)0.0004 (12)0.0062 (13)−0.0003 (12)
O1020.0224 (17)0.0204 (16)0.0214 (16)0.0026 (13)0.0099 (13)0.0018 (13)
O1030.0284 (18)0.0158 (16)0.0248 (17)0.0030 (13)0.0136 (14)0.0027 (13)
O1040.0240 (18)0.0180 (16)0.0177 (16)−0.0030 (14)0.0067 (13)−0.0027 (14)
C10.013 (2)0.021 (2)0.014 (2)−0.0017 (19)−0.0035 (17)0.0011 (18)
C20.016 (2)0.018 (2)0.017 (2)−0.0066 (18)0.0032 (17)0.0014 (18)
N30.018 (2)0.0127 (17)0.0128 (18)−0.0022 (15)0.0054 (14)−0.0002 (15)
C40.019 (2)0.021 (2)0.017 (2)0.0015 (19)−0.0022 (18)0.0001 (19)
C50.017 (2)0.022 (2)0.014 (2)0.0056 (19)0.0014 (17)−0.0001 (19)
C60.019 (2)0.027 (3)0.018 (2)0.004 (2)0.0001 (18)0.000 (2)
C70.018 (2)0.031 (3)0.027 (3)0.002 (2)0.006 (2)0.002 (2)
C80.025 (3)0.046 (3)0.022 (3)0.003 (2)0.007 (2)0.002 (2)
C90.031 (3)0.040 (3)0.021 (2)0.011 (2)0.005 (2)−0.008 (2)
C100.025 (3)0.027 (3)0.025 (2)0.005 (2)−0.003 (2)−0.002 (2)
N110.017 (2)0.0182 (19)0.019 (2)0.0015 (16)0.0072 (16)0.0020 (16)
C120.021 (2)0.020 (2)0.016 (2)−0.0028 (19)0.0087 (18)0.0025 (19)
C130.025 (3)0.023 (3)0.024 (2)−0.009 (2)0.007 (2)−0.001 (2)
C140.029 (3)0.019 (2)0.022 (2)−0.002 (2)0.014 (2)0.000 (2)
C150.021 (2)0.021 (2)0.020 (2)0.007 (2)0.0108 (19)0.0043 (19)
C160.022 (2)0.022 (2)0.011 (2)0.0025 (19)0.0076 (18)0.0057 (18)
C170.024 (3)0.028 (3)0.026 (3)−0.004 (2)0.004 (2)0.004 (2)
C180.029 (3)0.043 (3)0.023 (3)−0.004 (2)0.000 (2)0.009 (2)
C190.027 (3)0.043 (3)0.032 (3)0.008 (2)0.008 (2)0.019 (3)
C200.027 (3)0.024 (3)0.034 (3)0.006 (2)0.016 (2)0.009 (2)
C210.042 (3)0.015 (3)0.054 (4)0.001 (2)0.011 (3)−0.004 (2)
C1010.020 (2)0.016 (2)0.014 (2)0.0024 (19)−0.0038 (18)0.0014 (18)
C1020.025 (2)0.014 (2)0.013 (2)−0.0009 (19)0.0046 (18)−0.0011 (18)
N1030.0133 (19)0.0157 (19)0.0182 (19)−0.0009 (15)0.0001 (15)−0.0004 (16)
C1040.021 (2)0.012 (2)0.018 (2)0.0010 (18)−0.0033 (18)−0.0013 (18)
C1050.017 (2)0.022 (2)0.017 (2)−0.0003 (19)−0.0017 (18)−0.0009 (19)
C1060.019 (2)0.023 (2)0.013 (2)−0.0007 (19)0.0009 (18)−0.0006 (19)
C1070.023 (3)0.027 (3)0.018 (2)0.003 (2)0.0040 (19)−0.004 (2)
C1080.023 (3)0.036 (3)0.020 (2)−0.004 (2)0.0061 (19)−0.001 (2)
C1090.028 (3)0.030 (3)0.021 (2)−0.009 (2)0.004 (2)0.007 (2)
C1100.030 (3)0.019 (2)0.021 (2)−0.003 (2)0.002 (2)0.0013 (19)
N1110.0168 (19)0.0130 (17)0.0121 (17)0.0010 (15)0.0074 (14)−0.0007 (15)
C1120.015 (2)0.020 (2)0.022 (2)0.0020 (19)0.0039 (18)0.0002 (19)
C1130.030 (3)0.022 (2)0.012 (2)0.005 (2)0.0030 (18)0.0027 (19)
C1140.031 (3)0.017 (2)0.021 (2)0.002 (2)0.010 (2)0.002 (2)
C1150.028 (3)0.015 (2)0.020 (2)0.0014 (19)0.0118 (19)−0.0003 (19)
C1160.018 (2)0.017 (2)0.022 (2)−0.0004 (19)0.0114 (18)−0.0010 (19)
C1170.024 (3)0.021 (2)0.017 (2)0.002 (2)0.0061 (19)−0.0029 (19)
C1180.020 (3)0.039 (3)0.024 (3)−0.002 (2)0.002 (2)−0.001 (2)
C1190.026 (3)0.033 (3)0.026 (3)−0.011 (2)0.013 (2)−0.012 (2)
C1200.032 (3)0.019 (2)0.027 (3)−0.008 (2)0.011 (2)−0.007 (2)
C1210.049 (3)0.021 (3)0.038 (3)−0.001 (2)0.006 (3)0.002 (2)
O50.043 (3)0.022 (2)0.023 (3)0.0000.008 (2)0.000
O60.040 (3)0.024 (3)0.017 (2)0.0000.005 (2)0.000

Geometric parameters (Å, °)

Cu1—O31.910 (3)C17—H170.9500
Cu1—N31.927 (3)C18—C191.408 (7)
Cu1—O11.986 (3)C18—H180.9500
Cu1—N111.993 (3)C19—C201.355 (7)
Cu1—O42.371 (3)C19—H190.9500
Cu2—O1031.909 (3)C20—H200.9500
Cu2—N1031.926 (3)C21—H21A0.9800
Cu2—N1111.982 (3)C21—H21B0.9800
Cu2—O1011.982 (3)C21—H21C0.9800
Cu2—O1042.367 (3)C101—C1021.527 (5)
O1—C11.276 (5)C102—N1031.463 (5)
O2—C11.235 (5)C102—H10A0.9900
O3—C61.312 (5)C102—H10B0.9900
O4—H4V0.879 (19)N103—C1041.272 (5)
O4—H4W0.87 (4)C104—C1051.447 (6)
O101—C1011.278 (5)C104—H1040.9500
O102—C1011.242 (5)C105—C1101.405 (6)
O103—C1061.305 (5)C105—C1061.426 (6)
O104—H4Y0.879 (19)C106—C1071.415 (6)
O104—H4Z0.87 (4)C107—C1081.369 (6)
C1—C21.518 (6)C107—H1070.9500
C2—N31.465 (5)C108—C1091.390 (6)
C2—H2A0.9900C108—H1080.9500
C2—H2B0.9900C109—C1101.368 (6)
N3—C41.276 (5)C109—H1090.9500
C4—C51.434 (5)C110—H1100.9500
C4—H40.9500N111—C1121.338 (5)
C5—C101.403 (6)N111—C1161.381 (5)
C5—C61.424 (6)C112—C1131.392 (6)
C6—C71.413 (6)C112—H1120.9500
C7—C81.371 (6)C113—C1141.363 (6)
C7—H70.9500C113—H1130.9500
C8—C91.398 (6)C114—C1151.426 (6)
C8—H80.9500C114—C1211.486 (6)
C9—C101.373 (6)C115—C1161.414 (6)
C9—H90.9500C115—C1201.419 (6)
C10—H100.9500C116—C1171.404 (6)
N11—C121.308 (5)C117—C1181.361 (6)
N11—C161.388 (5)C117—H1170.9500
C12—C131.404 (6)C118—C1191.406 (6)
C12—H120.9500C118—H1180.9500
C13—C141.364 (6)C119—C1201.362 (6)
C13—H130.9500C119—H1190.9500
C14—C151.430 (6)C120—H1200.9500
C14—C211.505 (6)C121—H12A0.9800
C15—C201.413 (6)C121—H12B0.9800
C15—C161.416 (6)C121—H12C0.9800
C16—C171.407 (6)O5—H5V0.890 (19)
C17—C181.357 (6)O6—H6V0.876 (19)
O3—Cu1—N393.49 (12)C17—C18—C19120.8 (4)
O3—Cu1—O1166.61 (12)C17—C18—H18119.6
N3—Cu1—O183.42 (12)C19—C18—H18119.6
O3—Cu1—N1192.10 (12)C20—C19—C18120.1 (4)
N3—Cu1—N11172.74 (14)C20—C19—H19120.0
O1—Cu1—N1190.08 (12)C18—C19—H19120.0
O3—Cu1—O4104.68 (11)C19—C20—C15121.2 (4)
N3—Cu1—O489.61 (12)C19—C20—H20119.4
O1—Cu1—O488.37 (11)C15—C20—H20119.4
N11—Cu1—O493.45 (12)C14—C21—H21A109.5
O103—Cu2—N10393.38 (13)C14—C21—H21B109.5
O103—Cu2—N11191.68 (12)H21A—C21—H21B109.5
N103—Cu2—N111172.24 (14)C14—C21—H21C109.5
O103—Cu2—O101166.81 (12)H21A—C21—H21C109.5
N103—Cu2—O10183.24 (12)H21B—C21—H21C109.5
N111—Cu2—O10190.51 (12)O102—C101—O101124.6 (4)
O103—Cu2—O104104.63 (11)O102—C101—C102118.8 (4)
N103—Cu2—O10490.45 (12)O101—C101—C102116.6 (4)
N111—Cu2—O10493.96 (12)N103—C102—C101108.9 (3)
O101—Cu2—O10488.19 (11)N103—C102—H10A109.9
C1—O1—Cu1114.6 (3)C101—C102—H10A109.9
C6—O3—Cu1126.5 (3)N103—C102—H10B109.9
Cu1—O4—H4V101 (3)C101—C102—H10B109.9
Cu1—O4—H4W110 (3)H10A—C102—H10B108.3
H4V—O4—H4W96 (4)C104—N103—C102119.6 (3)
C101—O101—Cu2114.9 (3)C104—N103—Cu2127.5 (3)
C106—O103—Cu2126.9 (3)C102—N103—Cu2112.7 (2)
Cu2—O104—H4Y107 (3)N103—C104—C105124.8 (4)
Cu2—O104—H4Z110 (3)N103—C104—H104117.6
H4Y—O104—H4Z103 (4)C105—C104—H104117.6
O2—C1—O1124.7 (4)C110—C105—C106119.9 (4)
O2—C1—C2118.3 (4)C110—C105—C104117.7 (4)
O1—C1—C2117.0 (3)C106—C105—C104122.4 (4)
N3—C2—C1109.4 (3)O103—C106—C107118.8 (4)
N3—C2—H2A109.8O103—C106—C105124.9 (4)
C1—C2—H2A109.8C107—C106—C105116.3 (4)
N3—C2—H2B109.8C108—C107—C106121.7 (4)
C1—C2—H2B109.8C108—C107—H107119.1
H2A—C2—H2B108.2C106—C107—H107119.1
C4—N3—C2120.6 (3)C107—C108—C109121.9 (4)
C4—N3—Cu1126.9 (3)C107—C108—H108119.1
C2—N3—Cu1112.4 (2)C109—C108—H108119.1
N3—C4—C5125.2 (4)C110—C109—C108117.9 (4)
N3—C4—H4117.4C110—C109—H109121.1
C5—C4—H4117.4C108—C109—H109121.1
C10—C5—C6119.4 (4)C109—C110—C105122.3 (4)
C10—C5—C4117.9 (4)C109—C110—H110118.8
C6—C5—C4122.8 (4)C105—C110—H110118.8
O3—C6—C7118.1 (4)C112—N111—C116117.3 (3)
O3—C6—C5124.6 (4)C112—N111—Cu2120.7 (3)
C7—C6—C5117.3 (4)C116—N111—Cu2121.9 (3)
C8—C7—C6121.4 (4)N111—C112—C113123.7 (4)
C8—C7—H7119.3N111—C112—H112118.1
C6—C7—H7119.3C113—C112—H112118.1
C7—C8—C9121.6 (4)C114—C113—C112120.7 (4)
C7—C8—H8119.2C114—C113—H113119.6
C9—C8—H8119.2C112—C113—H113119.6
C10—C9—C8117.9 (4)C113—C114—C115117.5 (4)
C10—C9—H9121.1C113—C114—C121121.1 (4)
C8—C9—H9121.1C115—C114—C121121.4 (4)
C9—C10—C5122.5 (4)C116—C115—C120117.3 (4)
C9—C10—H10118.8C116—C115—C114119.2 (4)
C5—C10—H10118.8C120—C115—C114123.5 (4)
C12—N11—C16118.3 (4)N111—C116—C117118.0 (4)
C12—N11—Cu1120.9 (3)N111—C116—C115121.5 (4)
C16—N11—Cu1120.8 (3)C117—C116—C115120.5 (4)
N11—C12—C13124.1 (4)C118—C117—C116120.2 (4)
N11—C12—H12117.9C118—C117—H117119.9
C13—C12—H12117.9C116—C117—H117119.9
C14—C13—C12119.6 (4)C117—C118—C119120.4 (4)
C14—C13—H13120.2C117—C118—H118119.8
C12—C13—H13120.2C119—C118—H118119.8
C13—C14—C15118.4 (4)C120—C119—C118120.1 (4)
C13—C14—C21120.6 (4)C120—C119—H119119.9
C15—C14—C21121.0 (4)C118—C119—H119119.9
C20—C15—C16118.0 (4)C119—C120—C115121.4 (4)
C20—C15—C14123.4 (4)C119—C120—H120119.3
C16—C15—C14118.6 (4)C115—C120—H120119.3
N11—C16—C17119.1 (4)C114—C121—H12A109.5
N11—C16—C15120.9 (4)C114—C121—H12B109.5
C17—C16—C15120.0 (4)H12A—C121—H12B109.5
C18—C17—C16119.9 (4)C114—C121—H12C109.5
C18—C17—H17120.0H12A—C121—H12C109.5
C16—C17—H17120.0H12B—C121—H12C109.5
O3—Cu1—O1—C188.7 (5)C14—C15—C16—C17−179.4 (4)
N3—Cu1—O1—C111.4 (3)N11—C16—C17—C18178.3 (4)
N11—Cu1—O1—C1−171.9 (3)C15—C16—C17—C18−0.8 (6)
O4—Cu1—O1—C1−78.4 (3)C16—C17—C18—C190.3 (7)
N3—Cu1—O3—C66.8 (3)C17—C18—C19—C20−0.6 (7)
O1—Cu1—O3—C6−69.4 (6)C18—C19—C20—C151.2 (7)
N11—Cu1—O3—C6−168.6 (3)C16—C15—C20—C19−1.7 (6)
O4—Cu1—O3—C697.3 (3)C14—C15—C20—C19179.2 (4)
O103—Cu2—O101—C101−87.7 (6)Cu2—O101—C101—O102−174.3 (3)
N103—Cu2—O101—C101−11.9 (3)Cu2—O101—C101—C1023.4 (4)
N111—Cu2—O101—C101172.8 (3)O102—C101—C102—N103−171.8 (3)
O104—Cu2—O101—C10178.8 (3)O101—C101—C102—N10310.4 (5)
N103—Cu2—O103—C106−1.9 (3)C101—C102—N103—C104165.2 (3)
N111—Cu2—O103—C106172.3 (3)C101—C102—N103—Cu2−19.5 (4)
O101—Cu2—O103—C10672.8 (6)O103—Cu2—N103—C104−0.5 (4)
O104—Cu2—O103—C106−93.2 (3)O101—Cu2—N103—C104−167.7 (4)
Cu1—O1—C1—O2174.8 (3)O104—Cu2—N103—C104104.2 (3)
Cu1—O1—C1—C2−3.8 (4)O103—Cu2—N103—C102−175.4 (3)
O2—C1—C2—N3172.2 (3)O101—Cu2—N103—C10217.4 (3)
O1—C1—C2—N3−9.0 (5)O104—Cu2—N103—C102−70.7 (3)
C1—C2—N3—C4−161.0 (4)C102—N103—C104—C105176.0 (4)
C1—C2—N3—Cu117.7 (4)Cu2—N103—C104—C1051.3 (6)
O3—Cu1—N3—C4−4.4 (4)N103—C104—C105—C110−178.5 (4)
O1—Cu1—N3—C4162.6 (4)N103—C104—C105—C106−0.1 (6)
O4—Cu1—N3—C4−109.0 (3)Cu2—O103—C106—C107−178.5 (3)
O3—Cu1—N3—C2177.0 (3)Cu2—O103—C106—C1053.4 (6)
O1—Cu1—N3—C2−16.0 (3)C110—C105—C106—O103175.9 (4)
O4—Cu1—N3—C272.4 (3)C104—C105—C106—O103−2.4 (6)
C2—N3—C4—C5−179.3 (4)C110—C105—C106—C107−2.2 (6)
Cu1—N3—C4—C52.2 (6)C104—C105—C106—C107179.4 (4)
N3—C4—C5—C10179.6 (4)O103—C106—C107—C108−175.5 (4)
N3—C4—C5—C6−0.6 (6)C105—C106—C107—C1082.7 (6)
Cu1—O3—C6—C7174.1 (3)C106—C107—C108—C109−1.4 (7)
Cu1—O3—C6—C5−7.3 (6)C107—C108—C109—C110−0.6 (7)
C10—C5—C6—O3−176.9 (4)C108—C109—C110—C1051.1 (7)
C4—C5—C6—O33.3 (6)C106—C105—C110—C1090.4 (6)
C10—C5—C6—C71.6 (6)C104—C105—C110—C109178.8 (4)
C4—C5—C6—C7−178.1 (4)O103—Cu2—N111—C11285.4 (3)
O3—C6—C7—C8177.2 (4)O101—Cu2—N111—C112−107.6 (3)
C5—C6—C7—C8−1.5 (6)O104—Cu2—N111—C112−19.4 (3)
C6—C7—C8—C90.1 (7)O103—Cu2—N111—C116−97.9 (3)
C7—C8—C9—C101.2 (7)O101—Cu2—N111—C11669.1 (3)
C8—C9—C10—C5−1.0 (7)O104—Cu2—N111—C116157.4 (3)
C6—C5—C10—C9−0.4 (6)C116—N111—C112—C1130.8 (6)
C4—C5—C10—C9179.3 (4)Cu2—N111—C112—C113177.7 (3)
O3—Cu1—N11—C12−86.6 (3)N111—C112—C113—C114−0.5 (6)
O1—Cu1—N11—C12106.6 (3)C112—C113—C114—C1150.6 (6)
O4—Cu1—N11—C1218.3 (3)C112—C113—C114—C121−179.6 (4)
O3—Cu1—N11—C1694.1 (3)C113—C114—C115—C116−1.1 (6)
O1—Cu1—N11—C16−72.7 (3)C121—C114—C115—C116179.2 (4)
O4—Cu1—N11—C16−161.1 (3)C113—C114—C115—C120−179.9 (4)
C16—N11—C12—C131.8 (6)C121—C114—C115—C1200.3 (7)
Cu1—N11—C12—C13−177.5 (3)C112—N111—C116—C117179.7 (4)
N11—C12—C13—C140.6 (6)Cu2—N111—C116—C1172.8 (5)
C12—C13—C14—C15−1.9 (6)C112—N111—C116—C115−1.3 (6)
C12—C13—C14—C21179.6 (4)Cu2—N111—C116—C115−178.2 (3)
C13—C14—C15—C20180.0 (4)C120—C115—C116—N111−179.6 (4)
C21—C14—C15—C20−1.5 (6)C114—C115—C116—N1111.5 (6)
C13—C14—C15—C160.8 (6)C120—C115—C116—C117−0.6 (6)
C21—C14—C15—C16179.3 (4)C114—C115—C116—C117−179.6 (4)
C12—N11—C16—C17178.1 (4)N111—C116—C117—C118−179.6 (4)
Cu1—N11—C16—C17−2.6 (5)C115—C116—C117—C1181.4 (6)
C12—N11—C16—C15−2.9 (6)C116—C117—C118—C119−0.9 (6)
Cu1—N11—C16—C15176.5 (3)C117—C118—C119—C120−0.4 (6)
C20—C15—C16—N11−177.6 (4)C118—C119—C120—C1151.1 (6)
C14—C15—C16—N111.6 (6)C116—C115—C120—C119−0.6 (6)
C20—C15—C16—C171.4 (6)C114—C115—C120—C119178.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4V···O102i0.879 (19)1.88 (2)2.756 (4)174 (4)
O4—H4W···O2ii0.87 (4)2.01 (3)2.825 (4)155 (4)
O5—H5V···O101iii0.890 (19)1.99 (2)2.865 (4)169 (4)
O6—H6V···O10.876 (19)2.01 (2)2.867 (4)165 (4)
O104—H4Y···O20.879 (19)1.90 (2)2.751 (4)162 (4)
O104—H4Z···O102iii0.87 (4)1.98 (2)2.823 (4)162 (4)

Symmetry codes: (i) x+1, y, z; (ii) −x+1, y, −z+1/2; (iii) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2236).

References

  • Bauerová, K., Valentová, J., Poništ, S., Navarová, J., Komendová, D. & Mihalová, D. (2005). Biologia, 60, 65–68.
  • Brandenburg, K. (2006). DIAMOND Release 3.1e. Crystal Impact GbR, Bonn, Germany.
  • Katsuki, T. (2003). Synlett, pp. 281–297.
  • Kishita, M., Nakahara, A. & Kubo, M. (1964). Aust. J. Chem.17, 810–816.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Versions 1.171.31.7. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
  • Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany. [PubMed]
  • Valent, A., Melník, M., Hudecová, D., Dudová, B., Kivekäs, R. & Sundberg, M. R. (2002). Inorg. Chim. Acta, 340, 15–20.
  • Vančo, J., Marek, J., Trávníček, Z., Račanská, E., Muselík, J. & Švajlenová, O. (2008). J. Inorg. Biochem In the press. doi:10.1016/j.jinorgbio.2007.10.003. [PubMed]
  • Vančo, J., Švajlenová, O., Račanská, E., Muselík, J. & Valentová, J. (2004). J. Trace Elem. Med. Biol.18, 155–161. [PubMed]
  • Warda, S. A. (1998a). Acta Cryst. C54, 187–189.
  • Warda, S. A. (1998b). Acta Cryst. C54, 768–770.
  • Warda, S. A. (1998c). Acta Cryst. C54, 1236–1238.
  • Warda, S. A. (1998d). Acta Cryst. C54, 1754–1755.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography