PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o520.
Published online 2008 January 25. doi:  10.1107/S1600536808002286
PMCID: PMC2960166

3-[(E)-2,4-Dichloro­benzyl­idene]-1-methyl­piperidin-4-one

Abstract

The piperidine ring of the title compound, C13H13Cl2NO, adopts an envelope conformation. Inter­molecular C—H(...)O inter­actions link the mol­ecules into a C(7) chain running along the b axis.

Related literature

For biological activities of 4-piperidones, see: Badorrey et al. (1999 [triangle]); Grishina et al. (1994 [triangle]); Nalanishi et al. (1974a [triangle],b [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o520-scheme1.jpg

Experimental

Crystal data

  • C13H13Cl2NO
  • M r = 270.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o520-efi1.jpg
  • a = 12.2013 (9) Å
  • b = 8.5901 (6) Å
  • c = 12.6391 (9) Å
  • β = 92.997 (1)°
  • V = 1322.90 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.47 mm−1
  • T = 293 (2) K
  • 0.24 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: none
  • 14377 measured reflections
  • 3071 independent reflections
  • 2654 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.120
  • S = 0.97
  • 3071 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808002286/ci2557sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808002286/ci2557Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

DG thanks the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship. The University Grants Commission (UGC–SAP) and Department of Science and Technology (DST–FIST), Government of India, are acknowledged by DV for providing facilities to the department.

supplementary crystallographic information

Comment

Synthesis of 4-piperidones is of current interest due to their potential medical applications (Grishina et al., 1994). 4-Piperidones have been found to exhibit blood cholesterol-lowering activities (Nalanishi et al., 1974a,b). Various piperidones and piperidine derivatives are present in numerous alkaloids (Badorrey et al., 1999). As the title compound is of biological significance, the crystal structure of the title compound has been determined by X-ray diffraction.

The sum of the bond angles around atom N1 (330 °) indicates sp3– hybridization. Atoms Cl1 and Cl2 deviate from the plane of the attached benzene ring by 0.075 (1) and -0.094 (1) Å, respectively. The piperidine ring adopts an envelope conformation, with puckering parameters (Cremer & Pople, 1975) and smallest displacement asymmetry parameters (Nardelli, 1983) of Q = 0.504 (2) Å, θ = 141.1 (2)°, [var phi] = 193.7 (4)° and ΔCs[N1] = 8.7 (2)°.

In the crystal structure, the C—H···O intermolecular interactions generate a C(7) chain running along the b axis.

Experimental

A mixture of 1-methyl-4-piperidone (1 mmol) and pyrrolidine (1.2 mmol) was taken in a glass tube, mixed well and kept aside for 5 min at ambient temperature. To this mixture, 2,4-dichlorobenzaldehyde (1 mmol) was added, mixed thoroughly and the tube containing the mixture was partially immersed in a silica bath placed in a microwave oven and irradiated at 4 power level for 7 minutes. The progress of the reaction was monitored after every 1 min of irradiation by TLC with petroleum ether:ethyl acetate (1:2 v/v mixture) as eluent. fter each irradiation, the reaction mixture was cooled to room temperature and mixed well. The maximum temperature of the silica bath, measured immediately after each irradiation was over by stirring the silica bath with the thermometer, was found to be 338 K. After completion of the reaction as evident from the TLC, the product was purified by column chromatography using petroleum ether:ethyl acetate (7:2 v/v) mixture and crystallized from ethyl acetate.

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(C). A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
Fig. 2.
The molecular packing in the title compound, viewed approximately down the a axis.

Crystal data

C13H13Cl2NOF000 = 560
Mr = 270.14Dx = 1.356 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1509 reflections
a = 12.2013 (9) Åθ = 2.3–25.0º
b = 8.5901 (6) ŵ = 0.47 mm1
c = 12.6391 (9) ÅT = 293 (2) K
β = 92.997 (1)ºBlock, pale yellow
V = 1322.90 (16) Å30.24 × 0.23 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer2654 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Monochromator: graphiteθmax = 28.1º
T = 293(2) Kθmin = 2.3º
ω scansh = −15→15
Absorption correction: nonek = −10→11
14377 measured reflectionsl = −16→16
3071 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.120  w = 1/[σ2(Fo2) + (0.0724P)2 + 0.3356P] where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
3071 reflectionsΔρmax = 0.34 e Å3
155 parametersΔρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.53390 (18)0.5088 (2)1.24853 (18)0.0781 (5)
H1A0.55180.50791.17550.117*
H1B0.59660.54211.29170.117*
H1C0.47400.57921.25760.117*
C20.47091 (17)0.3512 (2)1.38999 (14)0.0700 (5)
H2A0.40380.41041.39590.084*
H2B0.52800.40041.43460.084*
C30.4536 (2)0.1860 (3)1.42729 (13)0.0791 (6)
H3A0.52480.13741.44030.095*
H3B0.41820.18961.49420.095*
C40.38604 (15)0.0855 (2)1.35183 (13)0.0660 (5)
C50.37681 (12)0.1336 (2)1.23733 (11)0.0524 (3)
C60.41053 (13)0.29745 (19)1.21048 (12)0.0532 (3)
H6A0.43170.30081.13760.064*
H6B0.34840.36671.21680.064*
C70.34326 (12)0.0240 (2)1.16663 (12)0.0545 (4)
H70.3257−0.07281.19390.065*
C80.33134 (11)0.04126 (18)1.05058 (11)0.0486 (3)
C90.35991 (12)−0.08015 (17)0.98306 (12)0.0489 (3)
C100.35760 (12)−0.06504 (17)0.87383 (12)0.0496 (3)
H100.3791−0.14650.83110.059*
C110.32225 (13)0.07535 (18)0.83036 (11)0.0500 (3)
C120.28628 (14)0.19534 (19)0.89226 (13)0.0565 (4)
H120.25920.28670.86130.068*
C130.29116 (13)0.17732 (19)1.00152 (13)0.0557 (4)
H130.26700.25811.04340.067*
N10.50222 (11)0.35202 (16)1.28025 (10)0.0539 (3)
O10.34393 (15)−0.0325 (2)1.38258 (12)0.1014 (6)
Cl10.40318 (5)−0.25836 (5)1.03652 (4)0.07721 (18)
Cl20.32208 (5)0.09909 (5)0.69335 (3)0.07158 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0843 (13)0.0546 (10)0.0934 (14)−0.0057 (9)−0.0158 (11)0.0027 (10)
C20.0752 (11)0.0799 (12)0.0544 (9)0.0079 (9)−0.0035 (8)−0.0182 (9)
C30.0949 (14)0.1009 (15)0.0412 (8)−0.0155 (12)0.0012 (8)0.0010 (9)
C40.0617 (9)0.0896 (13)0.0472 (8)−0.0133 (9)0.0065 (7)0.0089 (8)
C50.0465 (7)0.0672 (9)0.0437 (7)−0.0049 (6)0.0037 (6)0.0033 (6)
C60.0523 (8)0.0595 (9)0.0475 (7)0.0023 (7)−0.0001 (6)−0.0007 (7)
C70.0509 (8)0.0625 (9)0.0501 (8)−0.0084 (7)0.0038 (6)0.0046 (7)
C80.0424 (7)0.0541 (8)0.0493 (7)−0.0043 (6)0.0011 (5)−0.0007 (6)
C90.0473 (7)0.0448 (7)0.0543 (8)−0.0020 (6)−0.0011 (6)0.0045 (6)
C100.0512 (7)0.0460 (7)0.0513 (8)−0.0012 (6)0.0016 (6)−0.0035 (6)
C110.0535 (8)0.0504 (7)0.0455 (7)−0.0036 (6)−0.0018 (6)0.0003 (6)
C120.0639 (9)0.0483 (8)0.0563 (8)0.0069 (7)−0.0084 (7)−0.0006 (7)
C130.0561 (8)0.0555 (8)0.0549 (8)0.0071 (7)−0.0032 (6)−0.0090 (7)
N10.0546 (7)0.0524 (7)0.0540 (7)0.0017 (5)−0.0029 (5)−0.0036 (5)
O10.1116 (12)0.1262 (13)0.0654 (8)−0.0543 (11)−0.0048 (8)0.0325 (9)
Cl10.1059 (4)0.0545 (3)0.0708 (3)0.0144 (2)0.0005 (3)0.01340 (19)
Cl20.1041 (4)0.0622 (3)0.0482 (2)−0.0037 (2)0.0024 (2)0.00406 (17)

Geometric parameters (Å, °)

C1—N11.463 (2)C6—H6A0.97
C1—H1A0.96C6—H6B0.97
C1—H1B0.96C7—C81.474 (2)
C1—H1C0.96C7—H70.93
C2—N11.458 (2)C8—C131.400 (2)
C2—C31.514 (3)C8—C91.403 (2)
C2—H2A0.97C9—C101.385 (2)
C2—H2B0.97C9—Cl11.7440 (15)
C3—C41.501 (3)C10—C111.385 (2)
C3—H3A0.97C10—H100.93
C3—H3B0.97C11—C121.380 (2)
C4—O11.209 (2)C11—Cl21.7435 (15)
C4—C51.504 (2)C12—C131.388 (2)
C5—C71.346 (2)C12—H120.93
C5—C61.510 (2)C13—H130.93
C6—N11.465 (2)
N1—C1—H1A109.5N1—C6—H6B109.3
N1—C1—H1B109.5C5—C6—H6B109.3
H1A—C1—H1B109.5H6A—C6—H6B107.9
N1—C1—H1C109.5C5—C7—C8126.95 (15)
H1A—C1—H1C109.5C5—C7—H7116.5
H1B—C1—H1C109.5C8—C7—H7116.5
N1—C2—C3110.39 (15)C13—C8—C9116.34 (13)
N1—C2—H2A109.6C13—C8—C7122.59 (14)
C3—C2—H2A109.6C9—C8—C7121.07 (14)
N1—C2—H2B109.6C10—C9—C8122.94 (13)
C3—C2—H2B109.6C10—C9—Cl1117.27 (11)
H2A—C2—H2B108.1C8—C9—Cl1119.78 (12)
C4—C3—C2114.99 (16)C11—C10—C9117.82 (13)
C4—C3—H3A108.5C11—C10—H10121.1
C2—C3—H3A108.5C9—C10—H10121.1
C4—C3—H3B108.5C12—C11—C10121.83 (14)
C2—C3—H3B108.5C12—C11—Cl2119.47 (12)
H3A—C3—H3B107.5C10—C11—Cl2118.69 (12)
O1—C4—C5121.85 (17)C11—C12—C13118.85 (15)
O1—C4—C3120.41 (16)C11—C12—H12120.6
C5—C4—C3117.69 (16)C13—C12—H12120.6
C7—C5—C4116.86 (16)C12—C13—C8121.99 (14)
C7—C5—C6125.39 (14)C12—C13—H13119.0
C4—C5—C6117.70 (14)C8—C13—H13119.0
N1—C6—C5111.81 (13)C1—N1—C2110.56 (15)
N1—C6—H6A109.3C1—N1—C6109.51 (14)
C5—C6—H6A109.3C2—N1—C6109.96 (13)
N1—C2—C3—C4−46.3 (2)C13—C8—C9—Cl1−176.27 (11)
C2—C3—C4—O1−161.3 (2)C7—C8—C9—Cl13.54 (19)
C2—C3—C4—C521.1 (3)C8—C9—C10—C11−2.0 (2)
O1—C4—C5—C7−15.5 (3)Cl1—C9—C10—C11179.32 (11)
C3—C4—C5—C7162.09 (18)C9—C10—C11—C12−2.4 (2)
O1—C4—C5—C6167.14 (19)C9—C10—C11—Cl2178.30 (11)
C3—C4—C5—C6−15.2 (2)C10—C11—C12—C133.4 (2)
C7—C5—C6—N1−142.95 (16)Cl2—C11—C12—C13−177.33 (13)
C4—C5—C6—N134.12 (19)C11—C12—C13—C80.0 (2)
C4—C5—C7—C8−177.87 (14)C9—C8—C13—C12−4.0 (2)
C6—C5—C7—C8−0.8 (3)C7—C8—C13—C12176.22 (14)
C5—C7—C8—C13−38.6 (2)C3—C2—N1—C1−172.10 (17)
C5—C7—C8—C9141.58 (17)C3—C2—N1—C666.9 (2)
C13—C8—C9—C105.0 (2)C5—C6—N1—C1178.07 (14)
C7—C8—C9—C10−175.16 (13)C5—C6—N1—C2−60.26 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.463.366 (2)163

Symmetry codes: (i) −x+1/2, y+1/2, −z+5/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2557).

References

  • Badorrey, R., Cativiela, C., Díaz-de-Villegas, M. D. & Gálvez, J. A. (1999). Tetrahedron, 55, 7601–7612.
  • Bruker (2001). SMART (Version 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Grishina, G. V., Gaidarova, E. L. & Zefirov, N. S. (1994). Chem. Heterocycl. Compd.30, 401–1426.
  • Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974a). Jpn Patent 74-03987.
  • Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974b). Chem. Abstr 81, 12085.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography