PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o456.
Published online 2008 January 16. doi:  10.1107/S1600536807067219
PMCID: PMC2960159

Methyl 4-chloro-3-nitro­benzoate

Abstract

In the title compound, C8H6ClNO4, the mol­ecules are linked by C—H(...)O inter­actions to form a chain parallel to the a axis. The chains are further connected by slipped π–π stacking between symmetry-related benzene rings, with a centroid-to-centroid distance of 3.646 (2) Å and an inter­planar distance of 3.474 Å, resulting in an offset of 1.106 Å.

Related literature

For related literature, see: de Souza et al. (2006 [triangle]); Jin & Xiao (2005 [triangle]); Spiniello & White (2003 [triangle]); Jönssen et al. (2004 [triangle]); Andrews & Ladlow (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o456-scheme1.jpg

Experimental

Crystal data

  • C8H6ClNO4
  • M r = 215.59
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o456-efi1.jpg
  • a = 7.338 (1) Å
  • b = 7.480 (1) Å
  • c = 9.715 (2) Å
  • α = 98.39 (3)°
  • β = 94.89 (3)°
  • γ = 118.95 (3)°
  • V = 454.1 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 293 (2) K
  • 0.40 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.854, T max = 0.961
  • 1918 measured reflections
  • 1773 independent reflections
  • 1389 reflections with I > 2σ(I)
  • R int = 0.019
  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.142
  • S = 1.12
  • 1773 reflections
  • 128 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067219/dn2295sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067219/dn2295Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center for Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some derivatives of benzoic acid are important chemical materials. We report here the crystal structure of the title compound, (I).

In compound (I) the nitro group is twisted with respect to the phenyl ring making a dihedral angle of 45.4 (1)° (Fig. 1). Similar twisted conformations are observed in related structures where the aryl ring bears nitro and halide adjacent to each other (de Souza et al., 2006; Spiniello & White, 2003), whereas a planar conformation is observed in other case (Jin & Xiao, 2005).

The molecules of (I) are linked by C—H···O interactions to form a chain parallel to the a axis (Table 1, Fig. 2). The chains are further connected by slippest π–π stacking between symmetry related phenyl rings with a centroit to centroid distance Cg1···Cg1i (Symmetry code: (i) 1 - x, 1 - y, 1 - z) of 3.646 (2) Å and an interplanar distance of 3.474 Å resulting in an offset of 1.106 Å.

Experimental

4-Chloro-3-nitrobenzoic acid (35.0 g, 0.174 mol) was suspended in methanol (150 ml) and cooled to 0°. Concentrated sulfuric acid (15 ml) was slowly added with stirring, and then the mixture was heated at reflux for 17 h. Upon cooling to room temperature, a precipitate formed, which was collected by filtration and washed with cold methanol (2*50 ml) and hexane (2*50 ml) to afford the methyl ester as a white solid (31.8 g, 85%) (Andrews & Ladlow, 2003; Jönssen et al., 2004). Pure compound (I) was obstained by crystallizing from methanol. Crystals of (I) suitable for X-ray diffraction were obstained by slow evaporation of an methanol solution.

Refinement

All H atoms were placed geometrically and treated as riding on their parent C atoms with C—H = 0.93 Å (Caromatic) and 0.96 Å (Cmethyl) with Uiso(H) = 1.2(Caromatic) or 1.5(methyl)Ueq (C).

Figures

Fig. 1.
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Partial packing view of (I) showing the formation of the chain through C—H···O hydrogen bonds indicated as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) 1 + x, ...

Crystal data

C8H6ClNO4Z = 2
Mr = 215.59F000 = 220
Triclinic, P1Dx = 1.577 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.338 (1) ÅCell parameters from 25 reflections
b = 7.480 (1) Åθ = 9–13º
c = 9.715 (2) ŵ = 0.41 mm1
α = 98.39 (3)ºT = 293 (2) K
β = 94.89 (3)ºBox, colourless
γ = 118.95 (3)º0.40 × 0.10 × 0.10 mm
V = 454.1 (2) Å3

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.019
Radiation source: fine-focus sealed tubeθmax = 26.0º
Monochromator: graphiteθmin = 2.2º
T = 293(2) Kh = 0→9
ω/2θ scansk = −9→8
Absorption correction: ψ scan(North et al., 1968)l = −11→11
Tmin = 0.854, Tmax = 0.9613 standard reflections
1918 measured reflections every 200 reflections
1773 independent reflections intensity decay: none
1389 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.142  w = 1/[σ2(Fo2) + (0.0588P)2 + 0.2181P] where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
1773 reflectionsΔρmax = 0.21 e Å3
128 parametersΔρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.2034 (5)0.0805 (6)0.0613 (3)0.0722 (9)
H1A−0.3435−0.00800.07790.108*
H1B−0.18320.0171−0.02480.108*
H1C−0.18570.21430.05360.108*
C2−0.0585 (4)0.1907 (4)0.3056 (3)0.0454 (6)
C30.1131 (4)0.2225 (4)0.4166 (3)0.0417 (6)
C40.2701 (4)0.1747 (4)0.3866 (3)0.0502 (7)
H40.26720.11800.29410.060*
C50.4285 (4)0.2108 (4)0.4925 (3)0.0536 (7)
H50.53060.17690.47090.064*
C60.4376 (4)0.2965 (4)0.6299 (3)0.0497 (6)
C70.2808 (4)0.3452 (4)0.6588 (3)0.0459 (6)
C80.1197 (4)0.3055 (4)0.5547 (3)0.0425 (6)
H80.01460.33440.57710.051*
Cl0.63808 (12)0.33572 (14)0.75859 (9)0.0731 (3)
N10.2849 (4)0.4450 (4)0.8022 (2)0.0569 (6)
O1−0.0490 (3)0.1079 (3)0.1782 (2)0.0591 (5)
O2−0.1910 (3)0.2373 (3)0.3279 (2)0.0626 (6)
O30.4525 (4)0.5930 (4)0.8665 (2)0.0838 (7)
O40.1169 (4)0.3786 (4)0.8445 (2)0.0801 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.075 (2)0.089 (2)0.0466 (17)0.0412 (19)0.0021 (15)0.0024 (15)
C20.0449 (14)0.0383 (13)0.0488 (15)0.0175 (11)0.0148 (11)0.0063 (11)
C30.0406 (13)0.0343 (12)0.0489 (14)0.0170 (10)0.0144 (11)0.0086 (10)
C40.0533 (15)0.0490 (15)0.0560 (16)0.0298 (13)0.0225 (13)0.0108 (12)
C50.0475 (15)0.0572 (16)0.0691 (18)0.0328 (13)0.0226 (13)0.0198 (14)
C60.0412 (13)0.0462 (14)0.0633 (17)0.0207 (12)0.0122 (12)0.0191 (12)
C70.0466 (14)0.0388 (13)0.0491 (15)0.0187 (11)0.0126 (11)0.0085 (11)
C80.0399 (13)0.0363 (12)0.0532 (15)0.0199 (10)0.0147 (11)0.0084 (10)
Cl0.0564 (5)0.0836 (6)0.0821 (6)0.0363 (4)0.0021 (4)0.0278 (4)
N10.0682 (16)0.0606 (15)0.0451 (13)0.0349 (13)0.0112 (12)0.0106 (11)
O10.0626 (12)0.0725 (13)0.0444 (10)0.0400 (11)0.0080 (9)−0.0024 (9)
O20.0584 (12)0.0832 (15)0.0574 (12)0.0468 (11)0.0118 (9)0.0049 (10)
O30.0794 (16)0.0785 (16)0.0661 (15)0.0294 (13)−0.0085 (12)−0.0115 (12)
O40.0839 (17)0.0938 (18)0.0647 (14)0.0446 (14)0.0324 (13)0.0128 (12)

Geometric parameters (Å, °)

C1—O11.450 (4)C4—H40.9300
C1—H1A0.9600C5—C61.375 (4)
C1—H1B0.9600C5—H50.9300
C1—H1C0.9600C6—C71.402 (4)
C2—O21.207 (3)C6—Cl1.725 (3)
C2—O11.324 (3)C7—C81.370 (4)
C2—C31.486 (4)C7—N11.471 (3)
C3—C81.380 (4)C8—H80.9300
C3—C41.402 (3)N1—O31.215 (3)
C4—C51.376 (4)N1—O41.220 (3)
O1—C1—H1A109.5C6—C5—H5119.6
O1—C1—H1B109.5C4—C5—H5119.6
H1A—C1—H1B109.5C5—C6—C7118.1 (3)
O1—C1—H1C109.5C5—C6—Cl118.7 (2)
H1A—C1—H1C109.5C7—C6—Cl123.1 (2)
H1B—C1—H1C109.5C8—C7—C6121.6 (2)
O2—C2—O1123.3 (3)C8—C7—N1117.2 (2)
O2—C2—C3124.1 (2)C6—C7—N1121.2 (2)
O1—C2—C3112.7 (2)C7—C8—C3120.1 (2)
C8—C3—C4118.7 (2)C7—C8—H8120.0
C8—C3—C2118.5 (2)C3—C8—H8120.0
C4—C3—C2122.8 (2)O3—N1—O4125.0 (3)
C5—C4—C3120.7 (2)O3—N1—C7117.8 (2)
C5—C4—H4119.6O4—N1—C7117.1 (2)
C3—C4—H4119.6C2—O1—C1116.9 (2)
C6—C5—C4120.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.473.272 (3)145

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2295).

References

  • Andrews, S. P. & Ladlow, M. (2003). J. Org. Chem.68, 5525–5533. [PubMed]
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Enraf–Nonius (1989). CAD-4 Software Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Jin, L.-F. & Xiao, F.-P. (2005). Acta Cryst. E61, o1237–o1238.
  • Jönssen, D., Warrington, B. H. & Ladlow, M. (2004). J. Comb. Chem.6, 584–595. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Souza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o295–o298. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Spiniello, M. & White, J. M. (2003). Org. Biomol. Chem.1, 3094–3096. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography