PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m335.
Published online 2008 January 11. doi:  10.1107/S1600536808000317
PMCID: PMC2960155

Dichloridotris(trimethyl­phosphine)nickel(II)

Abstract

The title compound, [NiCl2(C3H9P)3], was obtained as a product of the reaction of [NiCl2(PMe3)2] with an equivalent trimethyl­phosphine in diethyl ether. It easily loses trimethyl­phosphine at room temperature to give NiCl2(PMe3)2. There are two independent mol­ecules in the asymmetric unit, and their bond lengths and angles are similar. The Ni environment is trigonal bipyramidal. One Ni, one P and two Cl atoms lie in the equatorial plane, with the remaining two P atoms occupying axial positions. The equatorial Ni—P bond length is shorter than the axial bond lengths.

Related literature

The crystal structure of the related cobalt compound has been reported by Jiao et al. (2007 [triangle]). For related literature, see: Doriand & Gray (1966 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m335-scheme1.jpg

Experimental

Crystal data

  • [NiCl2(C3H9P)3]
  • M r = 357.83
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m335-efi1.jpg
  • a = 10.481 (2) Å
  • b = 11.741 (2) Å
  • c = 28.203 (6) Å
  • V = 3470.6 (12) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.68 mm−1
  • T = 293 (2) K
  • 0.30 × 0.25 × 0.22 mm

Data collection

  • Bruker P4 diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.633, T max = 0.709
  • 26702 measured reflections
  • 7557 independent reflections
  • 7309 reflections with I > 2σ(I)
  • R int = 0.073
  • 4 standard reflections every 50 reflections intensity decay: 0.02%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.081
  • S = 1.06
  • 7557 reflections
  • 289 parameters
  • H-atom parameters constrained
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.84 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 3276 Friedel pairs
  • Flack parameter: 0.006 (8)

Data collection: XSCANS (Bruker, 2001 [triangle]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2001 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808000317/br2064sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000317/br2064Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the NSFC (grant Nos. 20572062 and 20372042).

supplementary crystallographic information

Comment

The title molecular (Fig.1) contains two molecules in an asymmetric unit. Bond lengths and angles in the two molecules are approximately the same. The nickel atom lies in the center of a trigonal bipyramid in which two chlorine atoms and one P atom form an equatorial plane, two other phosphorus are arranged in axial positions. The equatorial Ni—P bond lengh is shorter than the axial ones. The nickel atoms do not lie on a straight line joining the apical phosphorus atoms. This is due to the apical groups experiencing greater repulsion from the equatorial PMe3 groups. Similar crystal structures have been reported in the literature e.g. tris(trimethylphosphine)diiodocobalt(II) (Jiao et al.(2007)). The lengths of Co—I (2.6) is longer than the range of Ni—Cl bond lengths, angle in the axial position of this compound (169.8 °) is a little bigger than that in the title compound (167.3–168.0 °).

Experimental

Standard vacuum techniques were used in manipulations of volatile and air sensitive material. Literature procedure was followed in the preparation of dichlorodi(trimethylphosphine)nickel (Doriand et al.(1966)). Other chemicals were used by purchased. To the solution of NiCl2(PMe3)2(1.0 g, 3.55 mmol) in 50 ml of diethyl ether was added trimethylphosphine (0.27 g, 3.55 mmol) at 193 K. This mixture was allowed to warm to 293 K and stirred for 6 h to form a dark blue solution, which was filtered. Crystallization from ether at 277 K afforded dark blue crystals suitable for X-ray diffraction analysis. (yield: 1.14 g, 89.8%, m. p: 397.15 K).

Refinement

All H atoms were positioned geometrically. All the H atoms are refined using a riding model with C—H = 0.96 Å and with Uiso(H) = 1.5 times Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. (Only one of the two molecules is shown.)

Crystal data

[NiCl2(C3H9P)3]F000 = 1504
Mr = 357.83Dx = 1.370 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6412 reflections
a = 10.481 (2) Åθ = 1.6–24.2º
b = 11.741 (2) ŵ = 1.68 mm1
c = 28.203 (6) ÅT = 293 (2) K
V = 3470.6 (12) Å3Block, blue
Z = 80.30 × 0.25 × 0.22 mm

Data collection

Bruker P4 diffractometerRint = 0.073
Radiation source: fine-focus sealed tubeθmax = 27.1º
Monochromator: graphiteθmin = 1.4º
T = 293(2) Kh = −13→13
ω scansk = −15→14
Absorption correction: multi-scan(SADABS; Sheldrick, 2004)l = −35→36
Tmin = 0.633, Tmax = 0.7094 standard reflections
26702 measured reflections every 50 reflections
7557 independent reflections intensity decay: 0.02%
7309 reflections with I > 2σ(I)

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030  w = 1/[σ2(Fo2) + (0.0528P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max = 0.002
S = 1.06Δρmax = 0.63 e Å3
7557 reflectionsΔρmin = −0.84 e Å3
289 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapFlack parameter: 0.006 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.72334 (3)0.45758 (2)0.757236 (10)0.02415 (8)
Ni20.89293 (3)−0.01317 (2)0.980401 (10)0.02370 (7)
P30.78376 (6)0.52513 (5)0.68901 (2)0.02503 (12)
Cl10.59423 (6)0.50132 (6)0.82016 (2)0.03563 (14)
P60.82135 (6)0.04616 (5)1.04857 (2)0.02697 (13)
Cl40.83645 (6)−0.15585 (5)0.92899 (2)0.03198 (13)
P50.77420 (6)0.10238 (5)0.93714 (2)0.02798 (13)
Cl31.07328 (6)0.10289 (5)0.95390 (2)0.03036 (12)
P20.88341 (7)0.53231 (6)0.79757 (2)0.03072 (13)
P41.03877 (6)−0.12977 (5)1.00949 (2)0.02620 (13)
Cl20.82969 (7)0.27500 (5)0.76850 (2)0.03829 (15)
P10.56145 (7)0.35783 (5)0.72950 (2)0.03075 (14)
C10.8573 (3)0.6661 (2)0.68588 (9)0.0321 (5)
H1A0.93250.66740.70530.048*
H1B0.79800.72230.69710.048*
H1C0.87990.68270.65360.048*
C20.6552 (3)0.0922 (3)1.05323 (11)0.0411 (6)
H2A0.60000.03181.04300.062*
H2B0.64200.15791.03360.062*
H2C0.63630.11111.08560.062*
C30.9884 (3)−0.2639 (2)1.03651 (11)0.0374 (6)
H3A1.0623−0.30701.04560.056*
H3B0.9390−0.30681.01410.056*
H3C0.9375−0.24821.06400.056*
C40.6659 (3)0.5473 (2)0.64191 (9)0.0343 (5)
H4A0.70850.57180.61350.051*
H4B0.60590.60450.65160.051*
H4C0.62160.47720.63580.051*
C51.1530 (3)−0.0718 (2)1.05139 (9)0.0343 (5)
H5A1.2195−0.12641.05680.051*
H5B1.1106−0.05521.08080.051*
H5C1.1891−0.00311.03870.051*
C60.7796 (3)0.2542 (2)0.95028 (10)0.0379 (6)
H6A0.86690.27870.95200.057*
H6B0.73830.26830.98010.057*
H6C0.73660.29560.92570.057*
C71.0461 (3)0.5101 (3)0.77589 (11)0.0422 (6)
H7A1.10570.54180.79810.063*
H7B1.05600.54700.74570.063*
H7C1.06180.43000.77240.063*
C80.8737 (4)0.6837 (2)0.81107 (11)0.0452 (7)
H8A0.78820.70240.82060.068*
H8B0.89600.72700.78340.068*
H8C0.93160.70160.83640.068*
C90.6053 (3)0.0687 (2)0.93156 (12)0.0410 (6)
H9A0.56640.12000.90930.061*
H9B0.56470.07660.96190.061*
H9C0.5958−0.00810.92050.061*
C100.8988 (3)0.4322 (2)0.66093 (9)0.0348 (6)
H10A0.86320.35730.65790.052*
H10B0.97470.42880.67990.052*
H10C0.91960.46140.63010.052*
C111.1422 (3)−0.1830 (2)0.96282 (10)0.0374 (6)
H11A1.1893−0.12090.94930.056*
H11B1.0914−0.21850.93870.056*
H11C1.2005−0.23780.97580.056*
C120.8933 (3)0.4679 (3)0.85625 (10)0.0460 (7)
H12A0.90480.38710.85310.069*
H12B0.81590.48290.87340.069*
H12C0.96430.49980.87320.069*
C130.8233 (3)−0.0500 (2)1.09934 (9)0.0375 (6)
H13A0.7871−0.01231.12640.056*
H13B0.9097−0.07151.10630.056*
H13C0.7743−0.11681.09210.056*
C140.8227 (3)0.1000 (3)0.87549 (10)0.0397 (6)
H14A0.81260.02430.86310.060*
H14B0.91050.12240.87310.060*
H14C0.77060.15180.85770.060*
C150.5937 (4)0.2620 (3)0.67975 (11)0.0461 (7)
H15A0.66380.21300.68760.069*
H15B0.61480.30600.65220.069*
H15C0.51930.21680.67340.069*
C160.4163 (3)0.4338 (3)0.71333 (12)0.0464 (7)
H16A0.35170.38010.70430.070*
H16B0.43370.48390.68720.070*
H16C0.38690.47750.74000.070*
C170.9083 (3)0.1690 (3)1.07128 (12)0.0450 (7)
H17A0.87400.19051.10150.067*
H17B0.89980.23141.04950.067*
H17C0.99680.14981.07470.067*
C180.5033 (3)0.2572 (3)0.77371 (11)0.0445 (7)
H18A0.46020.29790.79850.067*
H18B0.57400.21590.78690.067*
H18C0.44510.20480.75900.067*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.02733 (15)0.02569 (14)0.01943 (13)−0.00089 (11)0.00117 (11)0.00090 (10)
Ni20.02460 (15)0.02604 (14)0.02045 (13)0.00344 (11)−0.00030 (10)0.00021 (10)
P30.0271 (3)0.0272 (3)0.0208 (2)0.0007 (2)0.0019 (2)0.0027 (2)
Cl10.0369 (3)0.0433 (3)0.0267 (3)0.0036 (3)0.0070 (2)−0.0058 (2)
P60.0296 (3)0.0274 (3)0.0238 (3)0.0001 (2)0.0045 (2)−0.0017 (2)
Cl40.0346 (3)0.0306 (3)0.0308 (3)−0.0030 (2)−0.0036 (2)−0.0047 (2)
P50.0269 (3)0.0291 (3)0.0279 (3)0.0028 (3)−0.0007 (2)0.0050 (2)
Cl30.0298 (3)0.0325 (3)0.0288 (3)−0.0044 (2)0.0025 (2)−0.0002 (2)
P20.0312 (3)0.0346 (3)0.0263 (3)−0.0017 (3)−0.0050 (2)0.0017 (2)
P40.0255 (3)0.0279 (3)0.0252 (3)0.0038 (2)−0.0017 (2)−0.0002 (2)
Cl20.0429 (4)0.0313 (3)0.0407 (3)0.0099 (3)0.0048 (3)0.0083 (2)
P10.0335 (4)0.0305 (3)0.0283 (3)−0.0073 (3)0.0022 (3)−0.0017 (2)
C10.0317 (14)0.0327 (12)0.0318 (12)0.0001 (10)0.0021 (10)0.0063 (10)
C20.0389 (15)0.0440 (15)0.0403 (14)0.0060 (13)0.0135 (12)0.0076 (12)
C30.0345 (14)0.0347 (13)0.0429 (15)0.0016 (11)−0.0011 (11)0.0072 (11)
C40.0361 (14)0.0391 (13)0.0277 (11)−0.0002 (11)−0.0042 (10)0.0042 (10)
C50.0309 (13)0.0391 (13)0.0330 (12)0.0022 (11)−0.0040 (10)−0.0035 (10)
C60.0403 (15)0.0314 (12)0.0420 (14)0.0032 (11)0.0055 (12)0.0074 (10)
C70.0335 (14)0.0498 (16)0.0433 (15)−0.0002 (13)−0.0032 (12)0.0053 (13)
C80.0547 (19)0.0398 (14)0.0411 (15)−0.0059 (13)−0.0055 (14)−0.0109 (12)
C90.0338 (15)0.0399 (14)0.0493 (16)0.0014 (12)−0.0068 (12)0.0076 (12)
C100.0403 (15)0.0352 (13)0.0290 (12)0.0045 (11)0.0073 (11)0.0004 (9)
C110.0325 (14)0.0413 (14)0.0383 (13)0.0090 (11)−0.0002 (11)−0.0041 (11)
C120.0442 (17)0.0624 (18)0.0315 (13)0.0027 (15)−0.0078 (12)0.0088 (13)
C130.0430 (16)0.0403 (13)0.0292 (12)0.0020 (12)0.0013 (11)0.0028 (10)
C140.0417 (16)0.0492 (15)0.0282 (12)0.0030 (13)−0.0016 (11)0.0059 (11)
C150.061 (2)0.0377 (14)0.0394 (15)−0.0137 (14)0.0029 (14)−0.0092 (12)
C160.0386 (17)0.0482 (16)0.0525 (18)−0.0079 (13)−0.0049 (13)0.0011 (13)
C170.0518 (18)0.0394 (14)0.0438 (15)−0.0082 (13)0.0086 (14)−0.0130 (12)
C180.0526 (19)0.0380 (14)0.0429 (16)−0.0113 (13)0.0106 (14)0.0021 (12)

Geometric parameters (Å, °)

Ni1—P32.1754 (7)C5—H5B0.9600
Ni1—P12.2051 (8)C5—H5C0.9600
Ni1—P22.2088 (8)C6—H6A0.9600
Ni1—Cl12.2901 (7)C6—H6B0.9600
Ni1—Cl22.4369 (8)C6—H6C0.9600
Ni2—P62.1781 (7)C7—H7A0.9600
Ni2—P52.2086 (7)C7—H7B0.9600
Ni2—P42.2099 (7)C7—H7C0.9600
Ni2—Cl42.2932 (7)C8—H8A0.9600
Ni2—Cl32.4472 (7)C8—H8B0.9600
P3—C101.808 (3)C8—H8C0.9600
P3—C11.828 (3)C9—H9A0.9600
P3—C41.832 (3)C9—H9B0.9600
P6—C171.822 (3)C9—H9C0.9600
P6—C131.823 (3)C10—H10A0.9600
P6—C21.828 (3)C10—H10B0.9600
P5—C141.812 (3)C10—H10C0.9600
P5—C91.820 (3)C11—H11A0.9600
P5—C61.822 (3)C11—H11B0.9600
P2—C81.821 (3)C11—H11C0.9600
P2—C121.822 (3)C12—H12A0.9600
P2—C71.830 (3)C12—H12B0.9600
P4—C51.814 (3)C12—H12C0.9600
P4—C111.816 (3)C13—H13A0.9600
P4—C31.827 (3)C13—H13B0.9600
P1—C161.822 (4)C13—H13C0.9600
P1—C181.823 (3)C14—H14A0.9600
P1—C151.830 (3)C14—H14B0.9600
C1—H1A0.9600C14—H14C0.9600
C1—H1B0.9600C15—H15A0.9600
C1—H1C0.9600C15—H15B0.9600
C2—H2A0.9600C15—H15C0.9600
C2—H2B0.9600C16—H16A0.9600
C2—H2C0.9600C16—H16B0.9600
C3—H3A0.9600C16—H16C0.9600
C3—H3B0.9600C17—H17A0.9600
C3—H3C0.9600C17—H17B0.9600
C4—H4A0.9600C17—H17C0.9600
C4—H4B0.9600C18—H18A0.9600
C4—H4C0.9600C18—H18B0.9600
C5—H5A0.9600C18—H18C0.9600
P3—Ni1—P195.96 (3)H5A—C5—H5B109.5
P3—Ni1—P295.14 (3)P4—C5—H5C109.5
P1—Ni1—P2168.00 (3)H5A—C5—H5C109.5
P3—Ni1—Cl1140.87 (3)H5B—C5—H5C109.5
P1—Ni1—Cl186.52 (3)P5—C6—H6A109.5
P2—Ni1—Cl187.75 (3)P5—C6—H6B109.5
P3—Ni1—Cl2107.63 (3)H6A—C6—H6B109.5
P1—Ni1—Cl286.05 (3)P5—C6—H6C109.5
P2—Ni1—Cl286.26 (3)H6A—C6—H6C109.5
Cl1—Ni1—Cl2111.50 (3)H6B—C6—H6C109.5
P6—Ni2—P595.57 (3)P2—C7—H7A109.5
P6—Ni2—P496.24 (3)P2—C7—H7B109.5
P5—Ni2—P4167.25 (3)H7A—C7—H7B109.5
P6—Ni2—Cl4134.65 (3)P2—C7—H7C109.5
P5—Ni2—Cl487.36 (3)H7A—C7—H7C109.5
P4—Ni2—Cl487.75 (3)H7B—C7—H7C109.5
P6—Ni2—Cl3110.95 (3)P2—C8—H8A109.5
P5—Ni2—Cl385.67 (3)P2—C8—H8B109.5
P4—Ni2—Cl385.64 (3)H8A—C8—H8B109.5
Cl4—Ni2—Cl3114.40 (3)P2—C8—H8C109.5
C10—P3—C1104.12 (13)H8A—C8—H8C109.5
C10—P3—C4102.56 (13)H8B—C8—H8C109.5
C1—P3—C496.91 (13)P5—C9—H9A109.5
C10—P3—Ni1111.20 (9)P5—C9—H9B109.5
C1—P3—Ni1119.71 (9)H9A—C9—H9B109.5
C4—P3—Ni1119.79 (10)P5—C9—H9C109.5
C17—P6—C13102.02 (15)H9A—C9—H9C109.5
C17—P6—C2102.53 (15)H9B—C9—H9C109.5
C13—P6—C297.91 (14)P3—C10—H10A109.5
C17—P6—Ni2113.03 (11)P3—C10—H10B109.5
C13—P6—Ni2119.42 (10)H10A—C10—H10B109.5
C2—P6—Ni2119.09 (11)P3—C10—H10C109.5
C14—P5—C9100.74 (15)H10A—C10—H10C109.5
C14—P5—C6101.65 (14)H10B—C10—H10C109.5
C9—P5—C6105.08 (14)P4—C11—H11A109.5
C14—P5—Ni2111.26 (10)P4—C11—H11B109.5
C9—P5—Ni2117.54 (10)H11A—C11—H11B109.5
C6—P5—Ni2118.11 (10)P4—C11—H11C109.5
C8—P2—C12102.61 (16)H11A—C11—H11C109.5
C8—P2—C7105.13 (16)H11B—C11—H11C109.5
C12—P2—C7101.05 (15)P2—C12—H12A109.5
C8—P2—Ni1116.93 (12)P2—C12—H12B109.5
C12—P2—Ni1110.24 (12)H12A—C12—H12B109.5
C7—P2—Ni1118.62 (10)P2—C12—H12C109.5
C5—P4—C11101.98 (14)H12A—C12—H12C109.5
C5—P4—C3104.01 (14)H12B—C12—H12C109.5
C11—P4—C3100.25 (14)P6—C13—H13A109.5
C5—P4—Ni2117.76 (9)P6—C13—H13B109.5
C11—P4—Ni2110.91 (10)H13A—C13—H13B109.5
C3—P4—Ni2119.26 (10)P6—C13—H13C109.5
C16—P1—C18102.08 (17)H13A—C13—H13C109.5
C16—P1—C15105.26 (17)H13B—C13—H13C109.5
C18—P1—C15100.82 (14)P5—C14—H14A109.5
C16—P1—Ni1118.12 (11)P5—C14—H14B109.5
C18—P1—Ni1111.04 (12)H14A—C14—H14B109.5
C15—P1—Ni1117.16 (12)P5—C14—H14C109.5
P3—C1—H1A109.5H14A—C14—H14C109.5
P3—C1—H1B109.5H14B—C14—H14C109.5
H1A—C1—H1B109.5P1—C15—H15A109.5
P3—C1—H1C109.5P1—C15—H15B109.5
H1A—C1—H1C109.5H15A—C15—H15B109.5
H1B—C1—H1C109.5P1—C15—H15C109.5
P6—C2—H2A109.5H15A—C15—H15C109.5
P6—C2—H2B109.5H15B—C15—H15C109.5
H2A—C2—H2B109.5P1—C16—H16A109.5
P6—C2—H2C109.5P1—C16—H16B109.5
H2A—C2—H2C109.5H16A—C16—H16B109.5
H2B—C2—H2C109.5P1—C16—H16C109.5
P4—C3—H3A109.5H16A—C16—H16C109.5
P4—C3—H3B109.5H16B—C16—H16C109.5
H3A—C3—H3B109.5P6—C17—H17A109.5
P4—C3—H3C109.5P6—C17—H17B109.5
H3A—C3—H3C109.5H17A—C17—H17B109.5
H3B—C3—H3C109.5P6—C17—H17C109.5
P3—C4—H4A109.5H17A—C17—H17C109.5
P3—C4—H4B109.5H17B—C17—H17C109.5
H4A—C4—H4B109.5P1—C18—H18A109.5
P3—C4—H4C109.5P1—C18—H18B109.5
H4A—C4—H4C109.5H18A—C18—H18B109.5
H4B—C4—H4C109.5P1—C18—H18C109.5
P4—C5—H5A109.5H18A—C18—H18C109.5
P4—C5—H5B109.5H18B—C18—H18C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2064).

References

  • Bruker (2001). XSCANS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Doriand, Z. & Gray, H. B. (1966). J. Am. Chem. Soc.88, 1394–1398.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jiao, G. L., Li, X. Y., Sun, H. J. & Xu, X. F. (2007). J. Organomet. Chem.692, 4251–4258.
  • Sheldrick, G. M. (2001). SHELXTL Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography