PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1496.
Published online 2008 November 8. doi:  10.1107/S1600536808035320
PMCID: PMC2960151

(Formato-κO)bis­(1,10-phenanthroline-κ2 N,N′)copper(II) formate hexa­hydrate

Abstract

In the title compound, [Cu(CHO2)(C12H8N2)2]CHO2·6H2O, the Cu atom is coordinated in a distorted trigonal-bipyramidal fashion by an O atom of the formate ligand and four N atoms of two phenanthroline ligands with Cu—O and Cu—N distances of 2.020 (3) and 1.978 (3)–2.177 (3) Å, respectively. Hydrogen bonding O—H(...)O between water molecules and between water anions as well as π–π inter­actions [centroid–centroid distances between phen rings = 3.38 (7) and 3.40 (5) Å] are responsible for the supra­molecular assembly.

Related literature

For backgorund on the utilization of formic acid for the rational design and synthesis of coordination polymers and the potential applications of these compounds, see: Dybtsev et al. (2003 [triangle]); Manson et al. (2003 [triangle]); Wang et al. (2005 [triangle], 2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1496-scheme1.jpg

Experimental

Crystal data

  • [Cu(CHO2)(C12H8N2)2]CHO2·6H2O
  • M r = 622.09
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1496-efi1.jpg
  • a = 14.765 (3) Å
  • b = 12.764 (3) Å
  • c = 15.513 (3) Å
  • β = 109.76 (3)°
  • V = 2751.4 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.86 mm−1
  • T = 295 (2) K
  • 0.43 × 0.29 × 0.22 mm

Data collection

  • Bruker P4 diffractometer
  • Absorption correction: ψ scan (XSCANS; Siemens, 1996 [triangle]) T min = 0.740, T max = 0.819
  • 5942 measured reflections
  • 4812 independent reflections
  • 3341 reflections with I > 2σ(I)
  • R int = 0.068
  • 3 standard reflections every 97 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.163
  • S = 1.11
  • 4812 reflections
  • 372 parameters
  • H-atom parameters constrained
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.76 e Å−3

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808035320/pk2125sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035320/pk2125Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University, the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Ningbo Municipal Natural Science Foundation (grant No. 2006A610061), the Newer Training Program Foundation for Talents of the Science and Technology Department of Zhejiang Province (grant No. 2007R40G2070020) and the Scientific Research Fund of Ningbo University (XYL08012).

supplementary crystallographic information

Comment

In recent years, interest in the utilization of formic acid for the rational design and synthesis of coordination polymers has been growing rapidly due to their potential applications and intriguing architectures (Dybtsev, et al., 2003; Manson, et al., 2003; Wang, et al., 2005; Wang, et al., 2006). In the present contribution, we report a new copper complex, [Cu(phen)2(HCOO)](HCOO).6H2O, resulting from self-assembly of Cu2+ ions, phenanthroline and formic acid.

The asymmetric unit of the title compound consists of one [Cu(phen)2(HCOO)]+ complex cation, one formate anion and six water molecules. As illustrated in Fig. 1, the Cu atom is penta-coordinated by four N atoms of two different bidentate chelating phen ligands and one O atom of the formate ligand. The coordination polyhedra is a trigonal bipyramid with d(Cu—O) = 2.020 (3) Å and d(Cu—N) = 1.978 (3)–2.177 (3) Å. The phenanthroline ring systems are each nearly planar and the dihedral angle between the two phen planes is 56.69 (5)°. The complex cations are arranged in such a way that non-symmetry related phen planes of neighboring complexes are oriented parallel to each other with phen-to-phen separations of about 3.38 (7) and 3.40 (5) Å. Such π-π stacking interactions assemble the complex cations into two-dimensional layers parallel to (001) (Fig. 2). The six crystallographically distinct H2O molecules and the non-coordinating formate anions are held together by hydrogen bonds (d(O···O) = 2.794 (6)–2.879 (5) Å; <O—H···O = 148–179°) to generate two-dimensional water-anionic layers parallel to (100) (Fig. 3). Through the hydrogen bonding interactions (O9···O2), the [Cu(phen)2(HCOO)]+ complex cationic layers are assembled into a three-dimensional network with the H2O molecules.

Experimental

Addition of 2.0 ml (1.0 M) NaOH to a stirred aqueous solution of 0.171 g (1.00 mmol) CuCl2.2H2O in 5.0 ml H2O gave a blue precipitate, which was then separated by centrifugation, followed by washing with double-distilled water until no detectable Cl- anions were present in the supernatant. The precipitate was added to a stirred ethanolic aqueous solution of 0.398 g (2.00 mmol) phenanthroline monohydrate in 20 ml EtOH/H2O (v/v = 1:1). To the mixture was added 2.0 ml (1.0 M) HCOOH and the blue suspension was further stirred for ca 1 h. After filtration, the filtrate (pH = 5.56) was allowed to stand at room temperature. Slow evaporation for several days gave blue block crystals (yield 32%, based on the initial CuCl2.2H2O input).

Refinement

H atoms attached to C atoms of the phen ligands and formate anions were positioned geometrically and refined using a riding model, with C—H = 0.93, and Uiso(H) values set at 1.2 Ueq(C). The hydrogen atoms of the water molecules were located in difference Fourier maps and placed at fixed positions with Uiso(H) values set at 1.2 Ueq(O).

Figures

Fig. 1.
The molecular structure of the title complex showing 40% probability displacement ellipsoids.
Fig. 2.
Supramolecular assembly of the [Cu(phen)2(HCOO)]+ complex cations based on π-π stacking interactions.
Fig. 3.
The two-dimensional water-formate anion layers.

Crystal data

[Cu(CHO2)(C12H8N2)2]CHO2·6H2OF000 = 1292
Mr = 622.09Dx = 1.502 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 14.765 (3) Åθ = 5.0–12.5º
b = 12.764 (3) ŵ = 0.86 mm1
c = 15.513 (3) ÅT = 295 (2) K
β = 109.76 (3)ºBlock, blue
V = 2751.4 (11) Å30.43 × 0.29 × 0.22 mm
Z = 4

Data collection

Bruker P4 diffractometerRint = 0.068
Radiation source: fine-focus sealed tubeθmax = 25.0º
Monochromator: graphiteθmin = 1.7º
T = 295(2) Kh = −1→17
θ/2θ scansk = −1→15
Absorption correction: ψ scan(XSCANS; Siemens, 1996)l = −18→17
Tmin = 0.740, Tmax = 0.8193 standard reflections
5942 measured reflections every 97 reflections
4812 independent reflections intensity decay: none
3341 reflections with I > 2σ(I)

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.053  w = 1/[σ2(Fo2) + (0.0836P)2 + 2.1346P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.163(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.67 e Å3
4812 reflectionsΔρmin = −0.76 e Å3
372 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0091 (10)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.64373 (3)0.25126 (4)0.01020 (3)0.0379 (2)
N10.7686 (2)0.3308 (2)0.0792 (2)0.0375 (7)
N20.6376 (2)0.2407 (2)0.1353 (2)0.0396 (7)
C10.8348 (3)0.3739 (3)0.0496 (3)0.0478 (10)
H1A0.82520.3736−0.01290.057*
C20.9184 (3)0.4195 (3)0.1096 (3)0.0563 (11)
H2A0.96430.44710.08710.068*
C30.9326 (3)0.4234 (3)0.2005 (3)0.0558 (11)
H3A0.98810.45400.24050.067*
C40.8635 (3)0.3813 (3)0.2342 (3)0.0436 (9)
C50.8705 (4)0.3821 (4)0.3286 (3)0.0580 (12)
H5C0.92460.41120.37190.070*
C60.8005 (3)0.3416 (4)0.3557 (3)0.0558 (11)
H6C0.80560.34600.41710.067*
C70.7191 (3)0.2924 (3)0.2925 (2)0.0447 (9)
C80.6439 (4)0.2461 (4)0.3157 (3)0.0568 (12)
H8C0.64460.24810.37580.068*
C90.5702 (4)0.1984 (4)0.2498 (3)0.0592 (12)
H9C0.52090.16670.26500.071*
C100.5685 (3)0.1968 (4)0.1599 (3)0.0531 (10)
H10C0.51740.16420.11550.064*
C110.7114 (3)0.2880 (3)0.2003 (2)0.0359 (8)
C120.7831 (3)0.3341 (3)0.1702 (2)0.0357 (8)
N30.5138 (2)0.3447 (2)−0.0467 (2)0.0414 (7)
N40.6447 (2)0.2693 (2)−0.1166 (2)0.0393 (7)
C130.4500 (3)0.3792 (3)−0.0117 (3)0.0532 (10)
H13A0.46350.37370.05120.064*
C140.3627 (3)0.4240 (4)−0.0651 (4)0.0647 (13)
H14A0.31860.4462−0.03810.078*
C150.3430 (4)0.4348 (3)−0.1563 (4)0.0661 (13)
H15A0.28510.4648−0.19220.079*
C160.4094 (3)0.4007 (3)−0.1966 (3)0.0526 (11)
C170.3954 (4)0.4059 (4)−0.2923 (3)0.0679 (15)
H17A0.33930.4362−0.33160.081*
C180.4601 (4)0.3687 (4)−0.3271 (3)0.0656 (14)
H18A0.44800.3730−0.38980.079*
C190.5478 (3)0.3223 (3)−0.2694 (3)0.0514 (11)
C200.6173 (4)0.2797 (4)−0.3019 (3)0.0608 (13)
H20A0.60900.2827−0.36400.073*
C210.6962 (4)0.2345 (3)−0.2430 (3)0.0596 (13)
H21A0.74260.2059−0.26430.072*
C220.7083 (4)0.2306 (3)−0.1504 (3)0.0520 (11)
H22A0.76350.1994−0.11060.062*
C230.5649 (3)0.3155 (3)−0.1749 (2)0.0392 (9)
C240.4947 (3)0.3552 (3)−0.1378 (2)0.0384 (8)
C250.6441 (4)0.0437 (3)−0.0195 (3)0.0552 (11)
H250.6237−0.0242−0.03780.066*
O10.5806 (2)0.1097 (2)−0.02386 (19)0.0543 (7)
O20.7306 (2)0.0600 (3)0.0067 (2)0.0683 (9)
C260.1997 (4)0.5352 (4)0.2316 (3)0.0618 (12)
H260.24530.51240.28590.074*
O30.1314 (3)0.5838 (3)0.2400 (3)0.0798 (10)
O40.2164 (3)0.5125 (3)0.1609 (2)0.0796 (11)
O50.1030 (3)0.9175 (3)0.3028 (3)0.0833 (11)
O60.0247 (3)0.6818 (3)0.0693 (2)0.0770 (10)
O70.1697 (3)0.3535 (3)0.0289 (2)0.0729 (10)
O80.1647 (3)0.7213 (3)0.3948 (2)0.0719 (9)
O90.1259 (3)1.0518 (3)0.0279 (2)0.0885 (12)
O100.0479 (3)0.8961 (3)0.1125 (3)0.0831 (11)
H5A0.11690.85620.31550.100*
H5B0.14480.95210.31370.100*
H6A0.04820.64570.10740.100*
H6B0.05140.73990.08960.100*
H7A0.17000.41140.06160.100*
H7B0.11780.35520.00520.100*
H8A0.17460.68090.35760.100*
H8B0.21540.73540.42640.100*
H9A0.16691.03650.01260.100*
H9B0.09051.0691−0.02410.100*
H10A0.04780.91980.16400.100*
H10B0.07070.94180.08850.100*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0408 (3)0.0447 (3)0.0282 (3)−0.0022 (2)0.0116 (2)0.00049 (18)
N10.0403 (17)0.0364 (16)0.0372 (16)0.0011 (14)0.0149 (13)0.0014 (13)
N20.0380 (17)0.0473 (18)0.0350 (16)−0.0030 (14)0.0141 (13)0.0018 (13)
C10.054 (2)0.045 (2)0.049 (2)−0.0029 (19)0.0223 (19)0.0063 (18)
C20.048 (2)0.050 (2)0.076 (3)−0.005 (2)0.028 (2)0.004 (2)
C30.043 (2)0.047 (2)0.072 (3)−0.0049 (19)0.010 (2)−0.008 (2)
C40.041 (2)0.036 (2)0.048 (2)0.0021 (17)0.0074 (18)−0.0051 (17)
C50.065 (3)0.054 (3)0.040 (2)0.007 (2)−0.003 (2)−0.0094 (19)
C60.070 (3)0.060 (3)0.032 (2)0.006 (2)0.011 (2)−0.0045 (19)
C70.057 (2)0.046 (2)0.0314 (19)0.0104 (19)0.0154 (18)0.0028 (17)
C80.071 (3)0.069 (3)0.040 (2)0.007 (2)0.032 (2)0.009 (2)
C90.067 (3)0.069 (3)0.052 (3)−0.008 (2)0.034 (2)0.010 (2)
C100.050 (2)0.064 (3)0.048 (2)−0.010 (2)0.021 (2)0.001 (2)
C110.039 (2)0.0367 (18)0.0308 (18)0.0066 (16)0.0103 (16)0.0029 (15)
C120.039 (2)0.0308 (17)0.0362 (18)0.0061 (16)0.0116 (16)0.0012 (15)
N30.0456 (18)0.0380 (17)0.0403 (17)0.0032 (14)0.0142 (15)0.0006 (13)
N40.0449 (18)0.0409 (17)0.0354 (16)−0.0010 (14)0.0181 (14)0.0006 (13)
C130.058 (3)0.047 (2)0.060 (3)0.002 (2)0.027 (2)−0.005 (2)
C140.054 (3)0.051 (3)0.095 (4)0.007 (2)0.033 (3)−0.010 (3)
C150.055 (3)0.041 (2)0.091 (4)0.006 (2)0.009 (3)0.007 (2)
C160.051 (2)0.033 (2)0.061 (3)−0.0014 (18)0.003 (2)0.0078 (19)
C170.080 (4)0.045 (3)0.051 (3)−0.003 (2)−0.012 (3)0.018 (2)
C180.091 (4)0.056 (3)0.035 (2)−0.015 (3)0.002 (2)0.009 (2)
C190.079 (3)0.041 (2)0.0320 (19)−0.018 (2)0.015 (2)−0.0006 (17)
C200.103 (4)0.051 (2)0.036 (2)−0.023 (3)0.033 (3)−0.0063 (19)
C210.094 (4)0.047 (2)0.059 (3)−0.007 (2)0.053 (3)−0.009 (2)
C220.068 (3)0.047 (2)0.052 (2)−0.001 (2)0.036 (2)−0.0015 (19)
C230.052 (2)0.0323 (19)0.0311 (18)−0.0075 (17)0.0105 (17)−0.0003 (15)
C240.041 (2)0.0306 (18)0.0382 (19)−0.0027 (15)0.0070 (16)0.0032 (15)
C250.075 (3)0.037 (2)0.042 (2)−0.004 (2)0.006 (2)0.0013 (18)
O10.0549 (17)0.0500 (17)0.0495 (16)−0.0009 (15)0.0064 (13)0.0002 (13)
O20.061 (2)0.076 (2)0.0609 (19)0.0112 (18)0.0103 (16)0.0038 (17)
C260.074 (3)0.047 (2)0.058 (3)−0.002 (2)0.015 (2)−0.002 (2)
O30.065 (2)0.074 (2)0.103 (3)0.0053 (19)0.031 (2)−0.007 (2)
O40.116 (3)0.060 (2)0.061 (2)0.001 (2)0.027 (2)−0.0082 (16)
O50.089 (3)0.075 (2)0.090 (3)0.017 (2)0.036 (2)0.018 (2)
O60.078 (2)0.086 (3)0.064 (2)0.004 (2)0.0206 (18)−0.0112 (19)
O70.080 (2)0.076 (2)0.0580 (19)0.0064 (19)0.0182 (17)−0.0100 (17)
O80.075 (2)0.075 (2)0.072 (2)−0.0008 (18)0.0341 (19)0.0044 (18)
O90.085 (3)0.108 (3)0.067 (2)0.016 (2)0.0197 (19)−0.012 (2)
O100.094 (3)0.075 (2)0.076 (2)0.009 (2)0.023 (2)0.0016 (19)

Geometric parameters (Å, °)

Cu—N21.978 (3)C14—H14A0.9300
Cu—N41.986 (3)C15—C161.400 (7)
Cu—O12.020 (3)C15—H15A0.9300
Cu—N12.059 (3)C16—C241.407 (5)
Cu—N32.177 (3)C16—C171.430 (7)
N1—C11.332 (5)C17—C181.333 (7)
N1—C121.356 (5)C17—H17A0.9300
N2—C101.327 (5)C18—C191.430 (7)
N2—C111.352 (5)C18—H18A0.9300
C1—C21.397 (6)C19—C201.398 (7)
C1—H1A0.9300C19—C231.403 (5)
C2—C31.355 (6)C20—C211.343 (7)
C2—H2A0.9300C20—H20A0.9300
C3—C41.402 (6)C21—C221.388 (6)
C3—H3A0.9300C21—H21A0.9300
C4—C121.399 (5)C22—H22A0.9300
C4—C51.432 (6)C23—C241.437 (5)
C5—C61.345 (6)C25—O21.220 (5)
C5—H5C0.9300C25—O11.245 (5)
C6—C71.415 (6)C25—H250.9300
C6—H6C0.9300C26—O31.228 (6)
C7—C111.396 (5)C26—O41.237 (6)
C7—C81.409 (6)C26—H260.9300
C8—C91.360 (7)O5—H5A0.8162
C8—H8C0.9300O5—H5B0.7309
C9—C101.386 (6)O6—H6A0.7368
C9—H9C0.9300O6—H6B0.8486
C10—H10C0.9300O7—H7A0.8961
C11—C121.421 (5)O7—H7B0.7303
N3—C131.311 (5)O8—H8A0.8225
N3—C241.352 (5)O8—H8B0.7656
N4—C221.316 (5)O9—H9A0.7471
N4—C231.353 (5)O9—H9B0.8279
C13—C141.397 (6)O10—H10A0.8544
C13—H13A0.9300O10—H10B0.8217
C14—C151.351 (7)
N2—Cu—N4176.56 (12)C24—N3—Cu108.7 (2)
N2—Cu—O191.46 (12)C22—N4—C23118.4 (3)
N4—Cu—O190.09 (12)C22—N4—Cu126.6 (3)
N2—Cu—N181.60 (12)C23—N4—Cu114.6 (2)
N4—Cu—N198.78 (12)N3—C13—C14122.7 (4)
O1—Cu—N1146.07 (12)N3—C13—H13A118.7
N2—Cu—N396.24 (12)C14—C13—H13A118.7
N4—Cu—N380.52 (12)C15—C14—C13119.4 (4)
O1—Cu—N396.83 (12)C15—C14—H14A120.3
N1—Cu—N3116.87 (12)C13—C14—H14A120.3
C1—N1—C12118.0 (3)C14—C15—C16120.1 (4)
C1—N1—Cu131.1 (3)C14—C15—H15A120.0
C12—N1—Cu110.8 (2)C16—C15—H15A120.0
C10—N2—C11118.6 (3)C15—C16—C24116.6 (4)
C10—N2—Cu127.2 (3)C15—C16—C17125.0 (4)
C11—N2—Cu114.1 (2)C24—C16—C17118.4 (4)
N1—C1—C2121.9 (4)C18—C17—C16122.1 (4)
N1—C1—H1A119.0C18—C17—H17A118.9
C2—C1—H1A119.0C16—C17—H17A118.9
C3—C2—C1120.0 (4)C17—C18—C19121.0 (4)
C3—C2—H2A120.0C17—C18—H18A119.5
C1—C2—H2A120.0C19—C18—H18A119.5
C2—C3—C4119.8 (4)C20—C19—C23117.3 (4)
C2—C3—H3A120.1C20—C19—C18123.7 (4)
C4—C3—H3A120.1C23—C19—C18119.0 (4)
C12—C4—C3116.8 (4)C21—C20—C19119.7 (4)
C12—C4—C5118.7 (4)C21—C20—H20A120.2
C3—C4—C5124.6 (4)C19—C20—H20A120.2
C6—C5—C4121.3 (4)C20—C21—C22119.9 (4)
C6—C5—H5C119.3C20—C21—H21A120.1
C4—C5—H5C119.3C22—C21—H21A120.1
C5—C6—C7121.0 (4)N4—C22—C21122.6 (5)
C5—C6—H6C119.5N4—C22—H22A118.7
C7—C6—H6C119.5C21—C22—H22A118.7
C11—C7—C8116.5 (4)N4—C23—C19122.2 (4)
C11—C7—C6119.0 (4)N4—C23—C24118.0 (3)
C8—C7—C6124.6 (4)C19—C23—C24119.8 (4)
C9—C8—C7119.8 (4)N3—C24—C16122.9 (4)
C9—C8—H8C120.1N3—C24—C23117.4 (3)
C7—C8—H8C120.1C16—C24—C23119.7 (4)
C8—C9—C10120.0 (4)O2—C25—O1125.9 (4)
C8—C9—H9C120.0O2—C25—H25117.0
C10—C9—H9C120.0O1—C25—H25117.0
N2—C10—C9121.9 (4)C25—O1—Cu108.6 (3)
N2—C10—H10C119.1O3—C26—O4129.0 (5)
C9—C10—H10C119.1O3—C26—H26115.5
N2—C11—C7123.3 (4)O4—C26—H26115.5
N2—C11—C12116.2 (3)H5A—O5—H5B113.5
C7—C11—C12120.5 (4)H6A—O6—H6B102.5
N1—C12—C4123.4 (3)H7A—O7—H7B93.7
N1—C12—C11117.2 (3)H8A—O8—H8B103.3
C4—C12—C11119.5 (3)H9A—O9—H9B94.2
C13—N3—C24118.3 (3)H10A—O10—H10B107.7
C13—N3—Cu132.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···O80.822.102.874 (5)160
O5—H5B···O4i0.732.102.808 (6)164
O6—H6A···O30.742.162.870 (5)163
O6—H6B···O100.852.032.810 (5)153
O7—H7A···O40.901.952.799 (5)158
O7—H7B···O6ii0.732.082.794 (6)165
O8—H8A···O30.822.122.879 (5)154
O8—H8B···O7i0.762.202.876 (6)148
O9—H9A···O2iii0.752.052.754 (5)157
O9—H9B···O10iv0.832.092.827 (6)148
O10—H10A···O50.852.032.798 (6)149
O10—H10B···O90.822.012.832 (6)179

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x, −y+1, −z; (iii) −x+1, −y+1, −z; (iv) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2125).

References

  • Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2003). J. Am. Chem. Soc.126, 32–33. [PubMed]
  • Manson, J. L., Lecher, J. G., Gu, J., Geiser, U., Schlueter, J. A., Henning, R., Wang, X. P., Schultz, A. J., Koo, H. J. & Whangbo, M. H. (2003). Dalton Trans. pp. 2905-2911.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Wang, Y. Q., Cao, R., Bi, W. H., Li, X., Yuan, D. Q. & Sun, D. F. (2006). Microporous Mesoporous Mater.91, 215–220.
  • Wang, X. Y., Wei, H. Y., Wang, Z. M., Chen, Z. D. & Gao, S. (2005). Inorg. Chem.44, 572–583. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography