PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2251.
Published online 2008 November 8. doi:  10.1107/S160053680803331X
PMCID: PMC2960149

1,3-Di-4-pyridylpropane–4,4′-oxy­dibenzoic acid (1/1)

Abstract

The hydro­thermal reaction of Cd(NO3)2·4H2O, 1,3-di-4-pyridylpropane (BPP) and 4,4′-oxydibenzoic acid (OBA) led to the formation of the title compound, C13H14N2·C14H10O5. The asymmetric unit consists of one mol­ecule of OBA and one of BPP. In the OBA mol­ecule, one COOH group is nearly planar with its attached benzene ring [dihedral angle = 0.9 (1)°], while the other COOH group is slightly twisted with a dihedral angle of 10.8 (3)°. The carboxyl groups form strong inter­molecular O—H(...)N hydrogen bonds with N atoms of the pyridine rings in BPP, linking the mol­ecules into zigzag chains.

Related literature

For general background see: Belcher et al. (2002 [triangle]); Hagrman et al. (1999 [triangle]); Han et al. (2007 [triangle]); Luan et al. (2005 [triangle]); Nguyen et al. (2006 [triangle]); Wang et al. (2005 [triangle]); Yaghi et al. (1998 [triangle]). For related structures, see: Dai et al. (2005 [triangle]); Ma et al. (2006 [triangle]); Hou et al. (2008 [triangle]); Lee et al. (2003 [triangle]); Wang et al. (2008 [triangle]); Najafpour et al. (2008 [triangle]). For an idependent determination of this structure, see: Dong et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2251-scheme1.jpg

Experimental

Crystal data

  • C13H14N2·C14H10O5
  • M r = 456.48
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2251-efi1.jpg
  • a = 6.8938 (3) Å
  • b = 11.5869 (6) Å
  • c = 14.9570 (9) Å
  • α = 86.493 (4)°
  • β = 81.157 (4)°
  • γ = 74.016 (3)°
  • V = 1134.67 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 (2) K
  • 0.47 × 0.45 × 0.45 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.957, T max = 0.962
  • 8404 measured reflections
  • 5645 independent reflections
  • 2932 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.147
  • S = 1.01
  • 5645 reflections
  • 307 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXS97; software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680803331X/fl2221sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803331X/fl2221Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Tokyo Institute of Technology and MEXT for the financial support of this work.

supplementary crystallographic information

Comment

Over the past decades, the rational design and synthesis of metal-organic frameworks have received extensive attention in the fields of supramolecular chemistry and crystal engineering (Hagrman et al., 1999; Yaghi et al., 1998). These materials exhibit interesting functions such as catalysis, biology, electrical conductivity, magnetism and photochemistry. In the past five years, there has been a growing interest in metal-organic frameworks based on 1,3-di-4-pyridylpropane and 4,4'-oxydibenzoic acid ligands (Wang et al., 2005; Luan et al., 2005; Belcher et al., 2002; Han et al., 2007; Nguyen et al., 2006). Recently, we have focused on preparing metal-organic frameworks containing such organic ligands and metal ions. During the process, a new cocrystal of 1,3-di-4-pyridylpropane and 4,4'-oxydibenzoic acid was obtained which assembled by H-bondin and we report its synthesis and crystal structure here. The structures of some similar molecular materials have been reported (Dai et al., 2005; Lee et al., 2003; Ma et al., 2006; Wang et al., 2008; Hou et al., 2008; Najafpour et al., 2008). An independent study of (I) has also been published (Dong et al., 2008).

As shown in Fig. 1, the asymmetric unit contains one 1,3-di-4-pyridylpropane molecule and one 4,4'-oxydibenzoic acid molecule. The bond lengths and angles are within normal ranges. In 4,4'-oxydibenzoic acid molecule, one COOH group (C7/O2/O3) is nearly planar with one benzene ring (C1/C2/C3/C4/C5/C6, dihedral angle of 0.9 °), while another COOH group (C14/O4/O5) has a dihedral angle of 10.8 ° with another benzene ring (C8/C9/C10/C11/C12/C13). The dihedral angle between two benzene ring of a 4,4'-oxydibenzoic acid molecule is 57.0 °. In 1,3-di-4-pyridylpropane molecule, the dihedral angle between two pyridyl rings is 26.9 °. The carboxylic acid groups form strong intermolecular O—H···N hydrogen bonds (Table 1) with N atoms of the pyriding rings, linking the molecules into one-dimensional zigzag chains (Fig.2). Intermolecular C—H···O hydrogen bonds may be effective in the stabilization of the crystal structure.

Experimental

In a typical synthesis for the title compound, a mixture of Cd(NO3)2.4H2O 120 mg, 4,4'-oxydibenzoic acid 52 mg, 1,3-bis(4-pyridyl)propane 20 mg, HCl (38%) 0.1 ml, NH3.H2O 0.08 ml, N,N-dimethylformamide (DMF) 3.0 ml and H2O 6.0 ml were sealed in a 15 ml Teflon-lined stainless steel autoclave and heated under autogenous pressure for five days at 393 K. After slow cooling to room temperature, the block-shaped colourless crystalline product was filtered, washed with distilled water, and dried at ambient temperature. The crystal used for data collection was obtained directly from the sample that was washed and dried without further re-crystallization.

Refinement

The C-bound H atoms were positioned geometrically with C—H = 0.93–0.97 Å, and allowed to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C). The H atoms on oxygen atoms of carboxylic acid groups were found in a difference map and refined with a riding model with O—H = 0.82 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The structure of the title compound, Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A one-dimensional zigzag chain formed by intermolecular O—H···N hydrogen bonds. (Hydrogen bonds are indicated by dashed lines)

Crystal data

C13H14N2·C14H10O5Z = 2
Mr = 456.48F000 = 480
Triclinic, P1Dx = 1.336 Mg m3
Hall symbol: -P1Melting point: not measured K
a = 6.8938 (3) ÅMo Kα radiation λ = 0.71073 Å
b = 11.5869 (6) ÅCell parameters from 5645 reflections
c = 14.9570 (9) Åθ = 1.8–28.4º
α = 86.493 (4)ºµ = 0.09 mm1
β = 81.157 (4)ºT = 298 (2) K
γ = 74.016 (3)ºBlock, colourless
V = 1134.67 (10) Å30.47 × 0.45 × 0.45 mm

Data collection

Bruker SMART CCD area-detector diffractometer5645 independent reflections
Radiation source: fine-focus sealed tube2932 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.022
Detector resolution: 9.00cm pixels mm-1θmax = 28.4º
T = 298(2) Kθmin = 1.8º
[var phi] and ω scansh = −8→9
Absorption correction: multi-scan(SADABS; Bruker, 2002)k = −14→15
Tmin = 0.957, Tmax = 0.962l = −19→16
8404 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.147  w = 1/[σ2(Fo2) + (0.0616P)2 + 0.0668P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5645 reflectionsΔρmax = 0.19 e Å3
307 parametersΔρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1−0.1086 (2)0.38623 (14)0.57527 (11)0.0497 (4)
N20.6799 (2)0.69499 (14)0.97352 (11)0.0497 (4)
C150.0705 (3)0.38146 (18)0.59963 (16)0.0580 (6)
H150.18000.31560.58270.080*
C160.1014 (3)0.46960 (19)0.64881 (16)0.0571 (6)
H160.23010.46230.66400.080*
C17−0.0570 (3)0.56910 (16)0.67593 (13)0.0427 (5)
C18−0.2430 (3)0.57321 (17)0.64994 (14)0.0488 (5)
H18−0.35530.63790.66620.080*
C19−0.2627 (3)0.48237 (19)0.60034 (15)0.0527 (5)
H19−0.38930.48790.58340.080*
C20−0.0312 (3)0.67052 (17)0.72756 (14)0.0508 (5)
H20A−0.15310.69900.77090.080*
H20B−0.02050.73620.68540.080*
C210.1517 (3)0.63922 (18)0.77781 (15)0.0541 (5)
H21A0.14160.57430.82090.080*
H21B0.27470.61120.73500.080*
C220.1678 (3)0.74500 (17)0.82751 (15)0.0538 (5)
H22A0.04540.77080.87100.080*
H22B0.17030.81060.78420.080*
C230.6401 (3)0.60151 (18)0.93963 (15)0.0564 (6)
H230.72500.52520.94830.080*
C240.4788 (3)0.61262 (17)0.89228 (15)0.0539 (6)
H240.45660.54450.87050.080*
C250.3504 (3)0.72434 (17)0.87710 (13)0.0437 (5)
C260.3944 (3)0.82112 (17)0.91119 (15)0.0504 (5)
H260.31400.89860.90220.080*
C270.5568 (3)0.80294 (18)0.95832 (15)0.0528 (5)
H270.58210.86960.98080.080*
O10.6084 (2)−0.16655 (12)0.27513 (10)0.0580 (4)
O20.5302 (2)0.29158 (14)0.50942 (13)0.0798 (6)
O30.8616 (2)0.20798 (13)0.48596 (12)0.0716 (5)
H30.86310.26420.51630.080*
O4−0.1236 (2)−0.11337 (12)0.04949 (11)0.0666 (5)
O5−0.0307 (2)−0.31076 (12)0.07640 (11)0.0603 (4)
H5−0.1219−0.30940.04670.080*
C10.6118 (3)−0.06807 (16)0.32224 (13)0.0440 (5)
C20.4410 (3)0.01727 (18)0.35955 (14)0.0496 (5)
H20.31200.01370.35100.080*
C30.4625 (3)0.10781 (17)0.40961 (14)0.0477 (5)
H3A0.34710.16550.43460.080*
C40.6537 (3)0.11418 (16)0.42333 (13)0.0412 (4)
C50.8235 (3)0.02569 (18)0.38713 (14)0.0487 (5)
H5A0.95240.02750.39720.080*
C60.8041 (3)−0.06484 (17)0.33646 (14)0.0500 (5)
H60.9190−0.12320.31200.080*
C70.6739 (3)0.21355 (17)0.47726 (14)0.0481 (5)
C80.4451 (3)−0.16717 (17)0.23154 (13)0.0454 (5)
C90.3450 (3)−0.07097 (17)0.18192 (14)0.0519 (5)
H90.37820.00180.18020.080*
C100.1958 (3)−0.08367 (16)0.13509 (14)0.0486 (5)
H100.1277−0.01880.10190.080*
C110.1450 (3)−0.19174 (16)0.13651 (13)0.0408 (4)
C120.2458 (3)−0.28742 (16)0.18693 (14)0.0481 (5)
H120.2126−0.36020.18890.080*
C130.3958 (3)−0.27513 (17)0.23433 (15)0.0513 (5)
H130.4635−0.33960.26810.080*
C14−0.0170 (3)−0.20004 (17)0.08383 (13)0.0442 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0480 (10)0.0533 (10)0.0517 (11)−0.0151 (8)−0.0135 (8)−0.0097 (8)
N20.0498 (10)0.0505 (10)0.0547 (11)−0.0163 (8)−0.0186 (8)−0.0058 (8)
C150.0486 (12)0.0560 (13)0.0700 (16)−0.0095 (10)−0.0119 (11)−0.0195 (11)
C160.0407 (11)0.0625 (13)0.0725 (15)−0.0109 (10)−0.0191 (10)−0.0214 (11)
C170.0419 (10)0.0467 (11)0.0425 (11)−0.0126 (9)−0.0128 (9)−0.0054 (8)
C180.0422 (11)0.0497 (11)0.0563 (13)−0.0094 (9)−0.0166 (10)−0.0059 (9)
C190.0462 (11)0.0579 (13)0.0600 (14)−0.0157 (10)−0.0210 (10)−0.0052 (10)
C200.0483 (11)0.0509 (12)0.0578 (13)−0.0129 (9)−0.0184 (10)−0.0124 (10)
C210.0516 (12)0.0544 (12)0.0625 (14)−0.0151 (10)−0.0207 (10)−0.0132 (10)
C220.0558 (12)0.0519 (12)0.0594 (14)−0.0136 (10)−0.0236 (10)−0.0101 (10)
C230.0604 (13)0.0476 (12)0.0682 (15)−0.0155 (10)−0.0284 (11)−0.0020 (10)
C240.0617 (13)0.0434 (11)0.0655 (15)−0.0189 (10)−0.0251 (11)−0.0083 (10)
C250.0470 (11)0.0456 (11)0.0423 (11)−0.0156 (9)−0.0111 (9)−0.0052 (8)
C260.0489 (11)0.0431 (11)0.0625 (14)−0.0116 (9)−0.0165 (10)−0.0099 (9)
C270.0516 (12)0.0496 (12)0.0635 (14)−0.0171 (10)−0.0155 (10)−0.0157 (10)
O10.0535 (8)0.0512 (8)0.0755 (11)−0.0093 (6)−0.0305 (7)−0.0179 (7)
O20.0523 (9)0.0721 (11)0.1135 (15)0.0026 (8)−0.0246 (9)−0.0481 (10)
O30.0488 (9)0.0740 (10)0.0991 (13)−0.0148 (7)−0.0181 (8)−0.0448 (9)
O40.0742 (10)0.0471 (8)0.0893 (12)−0.0147 (7)−0.0498 (9)0.0038 (8)
O50.0661 (9)0.0437 (8)0.0821 (11)−0.0164 (7)−0.0396 (8)−0.0061 (7)
C10.0472 (11)0.0451 (11)0.0449 (12)−0.0148 (9)−0.0160 (9)−0.0064 (8)
C20.0375 (10)0.0591 (12)0.0571 (13)−0.0141 (9)−0.0171 (9)−0.0078 (10)
C30.0368 (10)0.0536 (12)0.0527 (13)−0.0070 (9)−0.0124 (9)−0.0098 (9)
C40.0405 (10)0.0450 (10)0.0398 (11)−0.0110 (8)−0.0104 (8)−0.0057 (8)
C50.0359 (10)0.0578 (12)0.0559 (13)−0.0147 (9)−0.0084 (9)−0.0147 (10)
C60.0392 (10)0.0552 (12)0.0563 (13)−0.0104 (9)−0.0074 (9)−0.0156 (10)
C70.0460 (11)0.0496 (12)0.0513 (13)−0.0100 (10)−0.0171 (10)−0.0086 (9)
C80.0463 (11)0.0472 (11)0.0471 (12)−0.0127 (9)−0.0166 (9)−0.0089 (9)
C90.0659 (13)0.0433 (11)0.0557 (13)−0.0234 (10)−0.0220 (11)0.0014 (9)
C100.0596 (12)0.0423 (11)0.0493 (12)−0.0155 (9)−0.0212 (10)0.0001 (9)
C110.0438 (10)0.0393 (10)0.0418 (11)−0.0115 (8)−0.0109 (9)−0.0059 (8)
C120.0533 (11)0.0383 (10)0.0581 (13)−0.0142 (9)−0.0199 (10)−0.0021 (9)
C130.0551 (12)0.0412 (11)0.0613 (14)−0.0104 (9)−0.0256 (10)0.0009 (9)
C140.0453 (11)0.0411 (11)0.0484 (12)−0.0112 (9)−0.0118 (9)−0.0071 (9)

Geometric parameters (Å, °)

N1—C151.326 (2)O1—C11.385 (2)
N1—C191.337 (2)O1—C81.387 (2)
N2—C271.333 (2)O2—C71.202 (2)
N2—C231.334 (2)O3—C71.304 (2)
C15—C161.375 (3)O3—H30.8200
C15—H150.9300O4—C141.208 (2)
C16—C171.383 (3)O5—C141.325 (2)
C16—H160.9300O5—H50.8200
C17—C181.384 (2)C1—C21.379 (3)
C17—C201.509 (2)C1—C61.385 (2)
C18—C191.372 (3)C2—C31.378 (3)
C18—H180.9300C2—H20.9300
C19—H190.9300C3—C41.387 (2)
C20—C211.514 (3)C3—H3A0.9300
C20—H20A0.9700C4—C51.388 (2)
C20—H20B0.9700C4—C71.494 (2)
C21—C221.510 (3)C5—C61.378 (2)
C21—H21A0.9700C5—H5A0.9300
C21—H21B0.9700C6—H60.9300
C22—C251.514 (3)C8—C91.379 (3)
C22—H22A0.9700C8—C131.380 (3)
C22—H22B0.9700C9—C101.374 (3)
C23—C241.381 (3)C9—H90.9300
C23—H230.9300C10—C111.388 (2)
C24—C251.380 (3)C10—H100.9300
C24—H240.9300C11—C121.384 (3)
C25—C261.384 (2)C11—C141.489 (2)
C26—C271.374 (3)C12—C131.382 (3)
C26—H260.9300C12—H120.9300
C27—H270.9300C13—H130.9300
C15—N1—C19117.07 (16)N2—C27—H27118.2
C27—N2—C23116.59 (16)C26—C27—H27118.2
N1—C15—C16122.91 (18)C1—O1—C8122.02 (14)
N1—C15—H15118.5C7—O3—H3109.5
C16—C15—H15118.5C14—O5—H5109.5
C15—C16—C17120.72 (17)C2—C1—C6120.44 (16)
C15—C16—H16119.6C2—C1—O1124.67 (16)
C17—C16—H16119.6C6—C1—O1114.70 (16)
C16—C17—C18115.85 (17)C3—C2—C1119.62 (17)
C16—C17—C20123.19 (16)C3—C2—H2120.2
C18—C17—C20120.92 (16)C1—C2—H2120.2
C19—C18—C17120.35 (17)C2—C3—C4120.95 (17)
C19—C18—H18119.8C2—C3—H3A119.5
C17—C18—H18119.8C4—C3—H3A119.5
N1—C19—C18123.10 (17)C3—C4—C5118.54 (16)
N1—C19—H19118.4C3—C4—C7120.15 (16)
C18—C19—H19118.4C5—C4—C7121.30 (16)
C17—C20—C21115.27 (16)C6—C5—C4121.02 (16)
C17—C20—H20A108.5C6—C5—H5A119.5
C21—C20—H20A108.5C4—C5—H5A119.5
C17—C20—H20B108.5C5—C6—C1119.39 (17)
C21—C20—H20B108.5C5—C6—H6120.3
H20A—C20—H20B107.5C1—C6—H6120.3
C22—C21—C20112.25 (16)O2—C7—O3123.16 (17)
C22—C21—H21A109.2O2—C7—C4122.99 (17)
C20—C21—H21A109.2O3—C7—C4113.85 (16)
C22—C21—H21B109.2C9—C8—C13120.40 (17)
C20—C21—H21B109.2C9—C8—O1123.73 (17)
H21A—C21—H21B107.9C13—C8—O1115.68 (17)
C21—C22—C25116.41 (17)C10—C9—C8119.34 (17)
C21—C22—H22A108.2C10—C9—H9120.3
C25—C22—H22A108.2C8—C9—H9120.3
C21—C22—H22B108.2C9—C10—C11121.15 (18)
C25—C22—H22B108.2C9—C10—H10119.4
H22A—C22—H22B107.3C11—C10—H10119.4
N2—C23—C24123.12 (18)C12—C11—C10118.96 (17)
N2—C23—H23118.4C12—C11—C14122.47 (17)
C24—C23—H23118.4C10—C11—C14118.57 (17)
C25—C24—C23120.29 (17)C13—C12—C11120.16 (17)
C25—C24—H24119.9C13—C12—H12119.9
C23—C24—H24119.9C11—C12—H12119.9
C24—C25—C26116.32 (17)C8—C13—C12119.99 (18)
C24—C25—C22124.00 (16)C8—C13—H13120.0
C26—C25—C22119.67 (17)C12—C13—H13120.0
C27—C26—C25120.08 (18)O4—C14—O5123.14 (17)
C27—C26—H26120.0O4—C14—C11122.70 (17)
C25—C26—H26120.0O5—C14—C11114.15 (16)
N2—C27—C26123.58 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.821.782.598 (2)174.0
O5—H5···N2ii0.821.872.685 (2)176.9

Symmetry codes: (i) x+1, y, z; (ii) x−1, y−1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2221).

References

  • Belcher, W. J., Longstaff, C. A., Neckenig, M. R. & Steed, J. W. (2002). Chem. Commun. pp. 1602–1603. [PubMed]
  • Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dai, Y.-M., Shen, H.-Y. & Huang, J.-F. (2005). Acta Cryst. E61, o3410–o3411.
  • Dong, W.-W., Li, D.-S., Zhao, J., Tang, L. & Hou, X.-Y. (2008). Acta Cryst. E64, o2252. [PMC free article] [PubMed]
  • Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed.38, 2638–2684. [PubMed]
  • Han, L., Valle, H. & Bu, X. H. (2007). Inorg. Chem.46, 1511–1513. [PubMed]
  • Hou, G.-G., Liu, L.-L., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2008). Acta Cryst. E64, o997. [PMC free article] [PubMed]
  • Lee, T. W., Lau, J. P. K. & Szeto, L. (2003). Acta Cryst. E59, o792–o793.
  • Luan, X. J., Wang, Y. Y., Li, D. S., Liu, P., Hu, H. M., Shi, Q. Z. & Peng, S. M. (2005). Angew. Chem. Int. Ed.44, 3864–3867. [PubMed]
  • Ma, Z.-C., Ma, A.-Q. & Wang, G.-P. (2006). Acta Cryst. E62, o1165–o1166.
  • Najafpour, M. M., Hołyńska, M. & Lis, T. (2008). Acta Cryst. E64, o985. [PMC free article] [PubMed]
  • Nguyen, D. T., Chew, E., Zhang, Q. C., Choi, A. & Bu, X. H. (2006). Inorg. Chem.45, 10722–10727. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Y.-Y., Hu, R.-D. & Wang, Y.-J. (2008). Acta Cryst. E64, o1442. [PMC free article] [PubMed]
  • Wang, X. L., Qin, C., Wang, E. B., Li, Y. G., Su, Z. M. & Carlucci, L. (2005). Angew. Chem. Int. Ed.44, 5824–5827. [PubMed]
  • Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography