PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2263.
Published online 2008 November 8. doi:  10.1107/S1600536808035502
PMCID: PMC2960144

trans-4-[(2,6-Dimethyl­phen­oxy)methyl]cyclo­hexa­necarboxylic acid

Abstract

The title compound, C16H22O3, is a useful inter­mediate in the synthesis of poly(amido­amine) dendrimers. The cyclo­hexane ring adopts a chair conformation. In the crystal structure, mol­ecules are linked into centrosymmetric dimers by pairs of O—H(...)O hydrogen bonds.

Related literature

For general background on poly(amido­amine) dendrimers, see: Ahmed et al. (2001 [triangle]); Grabchev et al. (2003 [triangle]); Wang et al. (2004 [triangle]). For related structures, see: Bucourt & Hainaut (1965 [triangle]); Dunitz & Strickler (1966 [triangle]); Luger et al. (1972 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2263-scheme1.jpg

Experimental

Crystal data

  • C16H22O3
  • M r = 262.34
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2263-efi1.jpg
  • a = 7.162 (3) Å
  • b = 7.680 (4) Å
  • c = 14.451 (4) Å
  • α = 95.26 (4)°
  • β = 98.35 (4)°
  • γ = 106.44 (3)°
  • V = 746.9 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 292 (2) K
  • 0.60 × 0.52 × 0.42 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 2886 measured reflections
  • 2715 independent reflections
  • 1461 reflections with I > 2σ(I)
  • R int = 0.013
  • 3 standard reflections every 250 reflections intensity decay: 2.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.196
  • S = 1.16
  • 2715 reflections
  • 175 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: DIFRAC (Gabe & White, 1993 [triangle]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808035502/ci2698sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035502/ci2698Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Poly(amidoamine) [PAMAM] dendrimers have attracted much interest for their symmetry, high degree of branching and high density of terminal functional groups, and with different structures they could be used in different fields. Various modifications of periphery of PAMAM dendrimers to change its physical or chemical properties have been reported recently (Wang et al., 2004; Grabchev et al., 2003; Ahmed et al., 2001). To change the lipophilicity of PAMAM dendrimers and provide a new type of linker with special stereostructure, a series of cyclohexanic acid derivatives were synthesized. In our synthetic work the title compound was obtained and here we report its crystal structure.

The cyclohexane ring of the title compound (Fig. 1) adopts a chair conformation. The average C—C bond length of the cyclohexane ring is 1.517 (4) Å, which is close to that of trans-1,4-cyclohexane dicarboxylic acid (1.523 (3) Å, Luger et al., 1972). The mean endocyclic angle of the cyclohexane is 111.1 (3)°, which is close to that observed for cyclohexane rings (111.1°, Bucourt & Hainaut, 1965; 111.4 (4)°, Dunitz & Strickler, 1966; Luger et al., 1972).

In the crystal structure, the molecules are linked into centrosymmetric dimers by O—H···O hydrogen bonds (Table 1).

Experimental

Methyl trans-4-(tosylmethyl)cyclohexanecarboxylate (3.26 g, 10 mmol), 2,6-dimethylphenol (3.66 g, 30 mmol) and potassium phosphate (10.6 g, 50 mmol) were suspended in dry DMF (20 ml) and heated at 368 K for 8 h, and then water (30 ml) and toluene (30 ml) were added. After agitation, the water layer separated was washed twice with toluene and the organic layer combined was washed with water and then dried with sodium sulfate. After filtration and distillation under vaccum, the crude product obtained was further purified by column chromatography to give pure methyl ester. The ester was then hydrolyzed in a ethanol (15 ml)–1 N NaOH (15 ml) solution for 5 h at 313 K. After cooling and acidification with hydrochloride, the white solid precipitated was collected. Colourless crystals were obtained by slow evaporation in chloroform at room temperature.

Refinement

H atoms were positioned geometrically (O—H = 0.82 Å and C—H = 0.93–0.98 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C). A rotating group model was used for methyl and hydroxyl groups.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C16H22O3Z = 2
Mr = 262.34F000 = 284
Triclinic, P1Dx = 1.167 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.162 (3) ÅCell parameters from 26 reflections
b = 7.680 (4) Åθ = 4.3–7.4º
c = 14.451 (4) ŵ = 0.08 mm1
α = 95.26 (4)ºT = 292 (2) K
β = 98.35 (4)ºBlock, colourless
γ = 106.44 (3)º0.60 × 0.52 × 0.42 mm
V = 746.9 (6) Å3

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.013
Radiation source: fine-focus sealed tubeθmax = 25.5º
Monochromator: graphiteθmin = 1.4º
T = 292(2) Kh = −8→8
ω/2θ scansk = −5→9
Absorption correction: nonel = −17→17
2886 measured reflections3 standard reflections
2715 independent reflections every 250 reflections
1461 reflections with I > 2σ(I) intensity decay: 2.3%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.196  w = 1/[σ2(Fo2) + (0.0902P)2 + 0.0605P] where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
2715 reflectionsΔρmax = 0.18 e Å3
175 parametersΔρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.8686 (2)0.1188 (2)0.70598 (13)0.0678 (5)
O21.2419 (3)−0.5645 (3)0.96803 (18)0.0922 (7)
H21.3381−0.57801.00150.138*
O31.4736 (3)−0.3312 (3)0.93470 (18)0.0964 (8)
C10.7116 (4)0.1817 (3)0.6701 (2)0.0628 (7)
C20.5908 (4)0.2148 (4)0.7308 (2)0.0769 (8)
C30.4398 (5)0.2823 (5)0.6941 (4)0.1122 (14)
H30.35180.30170.73240.135*
C40.4162 (6)0.3209 (5)0.6047 (5)0.1232 (17)
H40.31480.36840.58280.148*
C50.5403 (6)0.2907 (4)0.5465 (3)0.1052 (13)
H50.52350.31910.48530.126*
C60.6931 (4)0.2174 (4)0.5772 (2)0.0728 (8)
C70.8312 (6)0.1882 (5)0.5141 (2)0.1050 (11)
H7A0.92500.13680.54660.157*
H7B0.90000.30340.49650.157*
H7C0.75760.10560.45840.157*
C80.6272 (6)0.1818 (5)0.8314 (3)0.1143 (13)
H8A0.61370.05420.83330.171*
H8B0.53260.21580.86420.171*
H8C0.75850.25410.86120.171*
C90.8238 (4)−0.0765 (3)0.6916 (2)0.0710 (8)
H9A0.8080−0.11960.62490.085*
H9B0.7005−0.13200.71250.085*
C100.9881 (4)−0.1320 (3)0.74612 (18)0.0610 (7)
H101.1123−0.06540.72760.073*
C110.9560 (4)−0.3349 (4)0.7197 (2)0.0764 (8)
H11A0.9530−0.36060.65240.092*
H11B0.8287−0.40320.73290.092*
C121.1171 (4)−0.3994 (4)0.7733 (2)0.0746 (8)
H12A1.2426−0.34070.75510.089*
H12B1.0871−0.53080.75640.089*
C131.1352 (4)−0.3548 (4)0.8800 (2)0.0712 (8)
H131.0096−0.42090.89740.085*
C141.1699 (5)−0.1513 (4)0.9070 (2)0.0838 (9)
H14A1.2980−0.08390.89420.101*
H14B1.1718−0.12590.97420.101*
C151.0103 (5)−0.0858 (4)0.8526 (2)0.0789 (8)
H15A1.04250.04600.86890.095*
H15B0.8849−0.14190.87160.095*
C161.2952 (4)−0.4194 (4)0.9309 (2)0.0679 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0677 (12)0.0521 (10)0.0835 (12)0.0263 (9)−0.0042 (9)0.0107 (8)
O20.0857 (14)0.0824 (15)0.1224 (19)0.0393 (12)0.0165 (13)0.0434 (13)
O30.0695 (14)0.0986 (16)0.136 (2)0.0373 (12)0.0181 (12)0.0551 (14)
C10.0573 (15)0.0486 (14)0.0804 (18)0.0191 (12)−0.0007 (13)0.0088 (12)
C20.0742 (19)0.0565 (17)0.104 (2)0.0234 (15)0.0221 (17)0.0078 (15)
C30.083 (3)0.071 (2)0.193 (5)0.0338 (19)0.041 (3)0.013 (3)
C40.074 (3)0.079 (3)0.216 (6)0.037 (2)−0.010 (3)0.029 (3)
C50.103 (3)0.074 (2)0.122 (3)0.024 (2)−0.038 (2)0.027 (2)
C60.0754 (19)0.0592 (17)0.0762 (19)0.0179 (14)−0.0078 (15)0.0131 (14)
C70.130 (3)0.105 (3)0.085 (2)0.038 (2)0.024 (2)0.0224 (19)
C80.154 (3)0.100 (3)0.102 (3)0.040 (2)0.062 (3)0.012 (2)
C90.0734 (18)0.0548 (16)0.0841 (19)0.0268 (13)−0.0026 (14)0.0088 (13)
C100.0652 (16)0.0495 (14)0.0686 (16)0.0217 (12)0.0039 (12)0.0087 (12)
C110.0809 (19)0.0603 (17)0.090 (2)0.0345 (14)−0.0016 (15)0.0030 (14)
C120.0780 (19)0.0602 (17)0.090 (2)0.0348 (14)0.0035 (15)0.0051 (14)
C130.0676 (17)0.0716 (18)0.090 (2)0.0353 (14)0.0230 (14)0.0304 (15)
C140.112 (2)0.081 (2)0.0727 (19)0.0588 (19)0.0024 (16)0.0080 (15)
C150.098 (2)0.0747 (19)0.079 (2)0.0534 (17)0.0075 (15)0.0093 (15)
C160.0757 (19)0.0644 (17)0.0816 (19)0.0397 (15)0.0238 (15)0.0268 (15)

Geometric parameters (Å, °)

O1—C11.397 (3)C8—H8C0.96
O1—C91.431 (3)C9—C101.505 (3)
O2—C161.266 (3)C9—H9A0.97
O2—H20.82C9—H9B0.97
O3—C161.256 (3)C10—C111.513 (4)
C1—C21.373 (4)C10—C151.522 (4)
C1—C61.390 (4)C10—H100.98
C2—C31.386 (5)C11—C121.521 (4)
C2—C81.496 (5)C11—H11A0.97
C3—C41.350 (6)C11—H11B0.97
C3—H30.93C12—C131.526 (4)
C4—C51.359 (6)C12—H12A0.97
C4—H40.93C12—H12B0.97
C5—C61.402 (5)C13—C161.498 (4)
C5—H50.93C13—C141.516 (4)
C6—C71.487 (5)C13—H130.98
C7—H7A0.96C14—C151.521 (4)
C7—H7B0.96C14—H14A0.97
C7—H7C0.96C14—H14B0.97
C8—H8A0.96C15—H15A0.97
C8—H8B0.96C15—H15B0.97
C1—O1—C9113.91 (18)C9—C10—C15113.2 (2)
C16—O2—H2109.5C11—C10—C15110.1 (2)
C2—C1—C6123.7 (3)C9—C10—H10107.8
C2—C1—O1117.7 (3)C11—C10—H10107.8
C6—C1—O1118.5 (3)C15—C10—H10107.8
C1—C2—C3116.5 (3)C10—C11—C12112.2 (2)
C1—C2—C8120.4 (3)C10—C11—H11A109.2
C3—C2—C8123.1 (3)C12—C11—H11A109.2
C4—C3—C2122.2 (4)C10—C11—H11B109.2
C4—C3—H3118.9C12—C11—H11B109.2
C2—C3—H3118.9H11A—C11—H11B107.9
C3—C4—C5120.2 (4)C11—C12—C13111.6 (2)
C3—C4—H4119.9C11—C12—H12A109.3
C5—C4—H4119.9C13—C12—H12A109.3
C4—C5—C6121.2 (4)C11—C12—H12B109.3
C4—C5—H5119.4C13—C12—H12B109.3
C6—C5—H5119.4H12A—C12—H12B108.0
C1—C6—C5116.2 (3)C16—C13—C14112.1 (2)
C1—C6—C7122.8 (3)C16—C13—C12110.4 (2)
C5—C6—C7121.0 (3)C14—C13—C12110.0 (2)
C6—C7—H7A109.5C16—C13—H13108.1
C6—C7—H7B109.5C14—C13—H13108.1
H7A—C7—H7B109.5C12—C13—H13108.1
C6—C7—H7C109.5C13—C14—C15111.7 (2)
H7A—C7—H7C109.5C13—C14—H14A109.3
H7B—C7—H7C109.5C15—C14—H14A109.3
C2—C8—H8A109.5C13—C14—H14B109.3
C2—C8—H8B109.5C15—C14—H14B109.3
H8A—C8—H8B109.5H14A—C14—H14B107.9
C2—C8—H8C109.5C14—C15—C10112.6 (2)
H8A—C8—H8C109.5C14—C15—H15A109.1
H8B—C8—H8C109.5C10—C15—H15A109.1
O1—C9—C10109.9 (2)C14—C15—H15B109.1
O1—C9—H9A109.7C10—C15—H15B109.1
C10—C9—H9A109.7H15A—C15—H15B107.8
O1—C9—H9B109.7O3—C16—O2122.8 (2)
C10—C9—H9B109.7O3—C16—C13119.9 (2)
H9A—C9—H9B108.2O2—C16—C13117.3 (3)
C9—C10—C11109.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.862.658 (3)166

Symmetry codes: (i) −x+3, −y−1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2698).

References

  • Ahmed, S. M., Budd, P. M., McKeown, N. B., Evans, K. P., Beaumont, G. L., Donaldson, C. & Brennan, C. M. (2001). Polymer, 42, 889–896.
  • Bucourt, R. & Hainaut, D. (1965). Bull. Soc. Chim. Fr.5, 1366–1378.
  • Dunitz, J. D. & Strickler, P. (1966). Helv. Chim. Acta, 49, 290–291.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Gabe, E. J. & White, P. S. (1993). DIFRAC American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.
  • Grabchev, I., Chovelon, J. M., Bojinov, V. & Ivanova, G. (2003). Tetrahedron, 59, 9591–9598.
  • Luger, P., Plieth, K. & Ruban, G. (1972). Acta Cryst. B28, 706–710.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, B.-B., Zhang, X., Jia, X.-R., Luo, Y.-F., Sun, Z., Yang, L., Ji, Y. & Wei, Y. (2004). Polymer, 45, 8395–8402.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography