PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2463.
Published online 2008 November 29. doi:  10.1107/S1600536808039159
PMCID: PMC2960140

2,6-Dimethyl­anilinium chloride monohydrate

Abstract

In the title hydrated mol­ecular salt, C8H12N+·Cl·H2O, the component species inter­act by way of N—H(...)O, N—H(...)Cl and O—H(...)Cl hydrogen bonds, resulting in a three-dimensional network.

Related literature

For related structures, see: Abid et al. (2007 [triangle]); Mrad et al. (2006 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2463-scheme1.jpg

Experimental

Crystal data

  • C8H12N+·Cl·H2O
  • M r = 175.65
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2463-efi1.jpg
  • a = 8.676 (3) Å
  • b = 14.144 (3) Å
  • c = 7.913 (6) Å
  • β = 101.88 (5)°
  • V = 950.2 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.35 mm−1
  • T = 293 (2) K
  • 0.20 × 0.13 × 0.10 mm

Data collection

  • Enraf–Nonius TurboCAD-4 diffractometer
  • Absorption correction: none
  • 3722 measured reflections
  • 2244 independent reflections
  • 1827 reflections with I > 2σ(I)
  • R int = 0.033
  • 2 standard reflections frequency: 120 min intensity decay: 5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.080
  • S = 1.04
  • 2244 reflections
  • 156 parameters
  • H-atom parameters not refined
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808039159/hb2860sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039159/hb2860Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of our ongoing studies of organic-inorganic hybrid networks containing the 2,6-xylidinium cation (Mrad et al., 2006; Abid et al., 2007) we now report the synthesis and structure of the title compound, (I).

As shown in Fig. 1, the asymmetric unit of (I) contains a 2,6-xylidinium cation, a chloride anion and a water molecule. A perspective view of the structure along the a axis is given in Fig. 2. It shows that two 2,6-xylidinium cations are interconnected through two chloride anions into dimers via two N—H···Cl bonds, characterized by N···Cl separations of 3.264 (3) and 3.235 (3) Å) and forming an 8-membered ring with graph-set R24(8) (Bernstein et al., 1995).

The title compound is a crystalline hydrate including one water of crystallization, which interconnect these dimers to each other to form layers parallel to the (b, c) plane, through N—H···O and O—H···Cl hydrogen bonds (Table 1).

Hydrogen bonds, electrostatic and van der Waals interactions participate to the cohesion of the three-dimensional network and add stability to this compound (Fig. 2). An examination of the organic group moiety geometrical features shows that the C—C and C—N bond lengths and the C—C—C and C—C—N angles are in the range usually found for this molecule (Abid et al., 2007).

Experimental

2,6-xylidinie and HCl were mixed in water in a 1: 1 molar ratio. The obtained solution was slowly evapored at room temperature to yield colourless blocks of (I).

Refinement

The H atoms were located in a difference map and their positions and Uiso values were freely refined.

Figures

Fig. 1.
View of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level (arbitrary spheres for the H atoms).
Fig. 2.
A perspective view of the packing in (I).

Crystal data

C8H12N+·Cl·H2OF000 = 376
Mr = 175.65Dx = 1.228 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.676 (3) Åθ = 9.2–10.8º
b = 14.144 (3) ŵ = 0.35 mm1
c = 7.913 (6) ÅT = 293 (2) K
β = 101.88 (5)ºBlock, colourless
V = 950.2 (8) Å30.20 × 0.13 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius TurboCAD-4 diffractometerθmax = 28.0º
Monochromator: graphiteθmin = 2.8º
T = 293 Kh = −5→11
Non–profiled ω scansk = −18→0
Absorption correction: nonel = −10→10
3722 measured reflections2 standard reflections
2244 independent reflections every 120 min
1827 reflections with I > 2σ(I) intensity decay: 5%
Rint = 0.033

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters not refined
wR(F2) = 0.080  w = 1/[σ2(Fo2) + (0.0408P)2 + 0.1063P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2244 reflectionsΔρmax = 0.17 e Å3
156 parametersΔρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
H80.3326 (19)0.0879 (11)0.050 (2)0.048 (4)*
H70.3721 (19)0.1013 (11)0.233 (2)0.045 (4)*
H5−0.159 (2)0.2065 (13)0.033 (2)0.058 (4)*
H60.3494 (19)0.0085 (13)0.161 (2)0.053 (4)*
H3−0.121 (2)−0.0291 (12)0.318 (2)0.055 (4)*
H130.171 (2)0.2037 (14)−0.109 (2)0.066 (5)*
H110.265 (2)−0.0493 (14)0.427 (3)0.070 (6)*
H170.056 (2)0.2698 (15)−0.066 (2)0.073 (5)*
H20.488 (3)0.2297 (19)0.405 (3)0.083 (7)*
H4−0.278 (2)0.0943 (13)0.191 (2)0.067 (5)*
H10.472 (3)0.1562 (17)0.518 (3)0.090 (7)*
H100.215 (2)−0.1099 (13)0.268 (2)0.062 (5)*
H90.124 (2)−0.1045 (14)0.406 (3)0.071 (6)*
H120.215 (3)0.2560 (15)0.065 (3)0.087 (7)*
N10.31170 (12)0.06739 (8)0.14878 (14)0.0353 (2)
C70.1308 (2)0.22609 (11)−0.0155 (2)0.0510 (3)
C80.1800 (2)−0.07172 (12)0.3454 (2)0.0512 (3)
C10.14475 (13)0.07516 (8)0.15925 (14)0.0322 (2)
C60.05793 (14)0.15126 (9)0.07822 (14)0.0359 (3)
C5−0.09996 (16)0.15637 (10)0.08975 (17)0.0435 (3)
C20.08245 (14)0.00745 (9)0.25368 (15)0.0367 (3)
C3−0.07586 (16)0.01607 (10)0.26089 (17)0.0445 (3)
C4−0.16594 (15)0.08936 (11)0.18003 (18)0.0466 (3)
O10.48995 (14)0.16863 (9)0.41224 (15)0.0580 (3)
Cl10.45854 (4)0.11499 (2)0.81025 (4)0.04716 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0319 (5)0.0398 (5)0.0364 (5)0.0052 (4)0.0125 (4)0.0025 (4)
C70.0553 (9)0.0467 (7)0.0546 (8)0.0130 (7)0.0200 (7)0.0119 (6)
C80.0580 (9)0.0523 (8)0.0493 (8)0.0100 (7)0.0253 (7)0.0123 (7)
C10.0282 (5)0.0398 (6)0.0296 (5)0.0024 (4)0.0083 (4)−0.0058 (4)
C60.0370 (6)0.0389 (6)0.0318 (5)0.0050 (5)0.0074 (4)−0.0049 (4)
C50.0356 (6)0.0504 (7)0.0428 (6)0.0102 (6)0.0039 (5)−0.0091 (6)
C20.0378 (6)0.0416 (6)0.0328 (5)0.0007 (5)0.0121 (4)−0.0047 (5)
C30.0402 (7)0.0524 (8)0.0452 (6)−0.0068 (6)0.0186 (5)−0.0077 (6)
C40.0298 (6)0.0602 (8)0.0508 (7)−0.0003 (5)0.0107 (5)−0.0145 (6)
O10.0654 (7)0.0543 (7)0.0509 (6)0.0072 (5)0.0039 (5)−0.0041 (5)
Cl10.04621 (19)0.04719 (19)0.0534 (2)0.01013 (14)0.02267 (14)0.00643 (13)

Geometric parameters (Å, °)

N1—C11.4718 (16)C1—C21.3907 (17)
N1—H80.883 (18)C1—C61.3921 (17)
N1—H70.896 (17)C6—C51.3934 (18)
N1—H60.893 (18)C5—C41.380 (2)
C7—C61.504 (2)C5—H50.935 (18)
C7—H130.93 (2)C2—C31.3917 (18)
C7—H170.92 (2)C3—C41.374 (2)
C7—H120.96 (2)C3—H30.918 (18)
C8—C21.498 (2)C4—H41.00 (2)
C8—H110.93 (2)O1—H20.87 (3)
C8—H100.92 (2)O1—H10.90 (3)
C8—H90.88 (2)
C1—N1—H8114.1 (10)C2—C1—N1118.34 (11)
C1—N1—H7110.5 (10)C6—C1—N1118.50 (11)
H8—N1—H7106.5 (15)C1—C6—C5117.13 (12)
C1—N1—H6114.0 (11)C1—C6—C7121.91 (11)
H8—N1—H6105.3 (15)C5—C6—C7120.95 (12)
H7—N1—H6105.9 (14)C4—C5—C6121.09 (13)
C6—C7—H13114.5 (12)C4—C5—H5121.5 (11)
C6—C7—H17110.9 (13)C6—C5—H5117.4 (11)
H13—C7—H17103.3 (16)C1—C2—C3117.24 (12)
C6—C7—H12108.9 (13)C1—C2—C8122.14 (12)
H13—C7—H12108.2 (18)C3—C2—C8120.62 (12)
H17—C7—H12111.0 (18)C4—C3—C2121.22 (13)
C2—C8—H11111.7 (12)C4—C3—H3119.6 (11)
C2—C8—H10110.5 (11)C2—C3—H3119.2 (11)
H11—C8—H10109.9 (17)C3—C4—C5120.15 (12)
C2—C8—H9109.7 (13)C3—C4—H4118.9 (11)
H11—C8—H9104.3 (18)C5—C4—H4120.9 (11)
H10—C8—H9110.5 (17)H2—O1—H1105 (2)
C2—C1—C6123.14 (11)
C2—C1—C6—C5−2.12 (17)N1—C1—C2—C3−179.68 (10)
N1—C1—C6—C5179.69 (10)C6—C1—C2—C8−177.60 (12)
C2—C1—C6—C7176.85 (12)N1—C1—C2—C80.60 (18)
N1—C1—C6—C7−1.34 (17)C1—C2—C3—C4−0.96 (18)
C1—C6—C5—C40.94 (17)C8—C2—C3—C4178.78 (14)
C7—C6—C5—C4−178.04 (13)C2—C3—C4—C5−0.1 (2)
C6—C1—C2—C32.13 (17)C6—C5—C4—C30.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···Cl10.90 (2)2.41 (2)3.305 (3)173 (2)
O1—H2···Cl1i0.87 (3)2.32 (3)3.163 (3)165 (2)
N1—H6···Cl1ii0.893 (18)2.392 (18)3.235 (3)157.5 (15)
N1—H7···O10.896 (16)1.835 (16)2.731 (3)177.3 (17)
N1—H8···Cl1iii0.883 (16)2.414 (16)3.265 (3)162.8 (15)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y, −z+1; (iii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2860).

References

  • Abid, S., Hemissi, H. & Rzaigui, M. (2007). Acta Cryst. E63, o3117.
  • Bernstein, J., David, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Mrad, M. L., Ben Nasr, C. & Rzaigui, M. (2006). Anal. Sci.22, x227–x228.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography