PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2278.
Published online 2008 November 8. doi:  10.1107/S1600536808034752
PMCID: PMC2960137

2-(4-Phenyl-3H-1,5-benzodiazepin-2-yl)phenol

Abstract

In the title compound, C21H16N2O, the dihedral angle between the pendant aromatic rings is 74.2–(1)°.. The conformation is stabilized by an intramolecular O—H(...)N hydrogen bond.

Related literature

For the biological properties of Schiff bases, see: Abu-Hussen (2006 [triangle]); Mladenova et al. (2002 [triangle]); Singh et al. (2006 [triangle]). For the applications of nitro­gen heterocyclic compounds, see: Adsule et al. (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2278-scheme1.jpg

Experimental

Crystal data

  • C21H16N2O
  • M r = 312.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2278-efi1.jpg
  • a = 6.3787 (13) Å
  • b = 16.695 (3) Å
  • c = 16.166 (4) Å
  • β = 110.72 (3)°
  • V = 1610.2 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 298 (2) K
  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: none
  • 6422 measured reflections
  • 2806 independent reflections
  • 1726 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.099
  • wR(F 2) = 0.198
  • S = 1.18
  • 2806 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034752/at2658sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034752/at2658Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province (No.Q2006B02).

supplementary crystallographic information

Comment

Monocondensed Schiff bases use as intermediates, in the synthesis of unsymmetrical multidentate Schiff base lingands. So they are attractive. Schiff bases often exhibit important biological activities such as antifungal (Singh et al., 2006), antibacterial (Abu-Hussen et al., 2006) and antitumor (Mladenova et al., 2002). Nitrogen heterocyclic compounds have been used widely in the pharmaceutical industry, medicine and agriculture for their biological activity because of their antimicrobial, antipyretic, anti-inflammatory, and anticancer properties (Adsule et al., 2006). In this paper, we have synthesized a new Schiff base compound by the condensation of 2-(4-phenyl-3H-benzo[b][1,4]diazepin-2-yl)-phenol with diaminobenzene and characterized it by X-ray crystallography.

All the bond lengths in the compound are within normal range (Allen et al., 1987). The C9—N1 bond length is 1.289 (5) Å while C7—N2 bond length is 1.302 (5) Å that confirm they are both double bonds. Five atoms N2, C5, C7, C8 and C21 are in a plane(p1). Four atoms N1, C8, C9, C10 are in a plane(p2). The benzene ring C1—C6(p3), is approximately planar with its immediate substituent atoms C7 and O1 with a maximum deviation of 0.035 Å for O1.The benzene ring C10—C15(p4), is approximately planar with its immediate substituent atoms C9 with a maximum deviation of 0.038 Å for C9. The benzene ring C16—C21(p5). The dihedral angles formed by p1 with the p3, p4, p5 are 11.06, 80.49, 40.56°, respectively. The dihedral angles formed by p2 with the p3, p5 are 84.81, 42.56 °, respectively. The dihedral angles between p1 and p2 is 75.12 °. The molecular structure is stabilized by intramolecular O—H···N hydrogen-bonding interactions and the crystal structure is stabilized by C—H···π interactions {C13···Cg1 = 3.871, H13A···Cg1 = 3.161 Å, C13—H13A···Cg1 = 134.58° [Symmetry code: -1+x, 1/2-y, -1/2+z]; C18···Cg2 = 3.897, H18A···Cg2 = 3.126 Å, C18—H18A···Cg2 = 141.54° [Symmetry code: 1-x, -y, 1-z]; C19···Cg1 = 3.682, H19A···Cg1 = 3.169 Å, C19—H19A···Cg1 = 116.71° [Symmetry code: x, 1/2-y, 1/2+z]; C20···Cg2 = 3.685, H20A···Cg2 = 3.052 Å, C20—H20A···Cg2 = 126.85° [Symmetry code: x, 1/2-y, 1/2+z]. Cg1 and, Cg2 are the centroids of rings C1—C6, C10—C15, respectively}.

Experimental

1-(2-Hydroxy-phenyl)-ethanone (13.6 g, 0.10 mol), chlorosyl-benzene (14.1 g, 0.10 mol), potassa (0.42 g) refluxed in absolute piperidine (15 ml) result in the yellow product of 1-(2-hydroxy-phenyl)-3-phenyl-propane-1,3-dione. The title compound was obtained by the reaction of 1-(2-hydroxy-phenyl)-3-phenyl-propane-1,3-dione (2.04 g, 0.01 mol) and benzene-1,2-diamine (1.08 g, 0.01 mol) without solvent. Single crystals suitable for X-ray measurements were obtained by slow evaporation of an absolute ethanol at room temperature.

Refinement

H atoms were fixed geometrically to ride on their attached atoms, with C—H = 0.93–0.97 Å and O—H = 0.84 Å, and with Uiso =1.2Ueq (C) or 1.5 Ueq (O).

Figures

Fig. 1.
The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C21H16N2OF000 = 656
Mr = 312.36Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2787 reflections
a = 6.3787 (13) Åθ = 2.5–26.0º
b = 16.695 (3) ŵ = 0.08 mm1
c = 16.166 (4) ÅT = 298 (2) K
β = 110.72 (3)ºBlock, yellow
V = 1610.2 (7) Å30.20 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART 1K CCD area-detector diffractometer1726 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Monochromator: graphiteθmax = 25.0º
T = 298(2) Kθmin = 1.8º
Thin–slice ω scansh = −7→7
Absorption correction: nonek = −9→19
6422 measured reflectionsl = −19→19
2806 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.099H-atom parameters constrained
wR(F2) = 0.198  w = 1/[σ2(Fo2) + (0.0623P)2 + 0.3681P] where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
2806 reflectionsΔρmax = 0.22 e Å3
217 parametersΔρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.0166 (5)−0.38550 (18)−0.5523 (2)0.0622 (10)
H1A0.0571−0.3466−0.57540.075*
N10.3086 (5)−0.10096 (19)−0.5027 (2)0.0366 (9)
N20.0328 (6)−0.2397 (2)−0.5993 (2)0.0407 (9)
C1−0.2099 (8)−0.4154 (3)−0.4699 (3)0.0593 (14)
H1C−0.1742−0.4692−0.47180.071*
C2−0.3515 (9)−0.3930 (3)−0.4277 (3)0.0676 (16)
H2B−0.4122−0.4317−0.40130.081*
C3−0.4051 (9)−0.3140 (4)−0.4237 (3)0.0678 (16)
H3A−0.5027−0.2988−0.39530.081*
C4−0.3130 (7)−0.2574 (3)−0.4623 (3)0.0511 (13)
H4A−0.3491−0.2039−0.45880.061*
C5−0.1671 (7)−0.2770 (3)−0.5064 (3)0.0373 (11)
C6−0.1186 (7)−0.3587 (3)−0.5099 (3)0.0456 (12)
C7−0.0739 (7)−0.2161 (3)−0.5483 (3)0.0367 (11)
C8−0.0850 (7)−0.1287 (2)−0.5304 (3)0.0377 (11)
H8A−0.1908−0.1183−0.50080.045*
H8B−0.1287−0.0980−0.58480.045*
C90.1498 (7)−0.1083 (2)−0.4713 (3)0.0351 (10)
C100.2076 (7)−0.1005 (2)−0.3739 (3)0.0390 (11)
C110.0546 (8)−0.0730 (3)−0.3376 (3)0.0517 (13)
H11A−0.0883−0.0578−0.37440.062*
C120.1128 (10)−0.0680 (3)−0.2474 (4)0.0631 (15)
H12A0.0095−0.0481−0.22400.076*
C130.3185 (10)−0.0916 (3)−0.1916 (3)0.0651 (15)
H13A0.3551−0.0891−0.13070.078*
C140.4708 (8)−0.1193 (3)−0.2274 (3)0.0614 (15)
H14A0.6126−0.1350−0.19010.074*
C150.4170 (8)−0.1242 (3)−0.3174 (3)0.0515 (13)
H15A0.5218−0.1435−0.34040.062*
C160.2675 (6)−0.1189 (3)−0.5918 (3)0.0350 (10)
C170.3790 (7)−0.0723 (3)−0.6349 (3)0.0421 (11)
H17A0.4668−0.0294−0.60540.050*
C180.3612 (8)−0.0887 (3)−0.7201 (3)0.0550 (13)
H18A0.4321−0.0558−0.74860.066*
C190.2394 (8)−0.1533 (3)−0.7638 (3)0.0573 (14)
H19A0.2287−0.1643−0.82150.069*
C200.1333 (8)−0.2020 (3)−0.7224 (3)0.0543 (13)
H20A0.0558−0.2469−0.75150.065*
C210.1407 (7)−0.1845 (3)−0.6372 (3)0.0391 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.077 (2)0.041 (2)0.084 (3)0.0033 (18)0.047 (2)−0.0025 (18)
N10.037 (2)0.030 (2)0.042 (2)0.0003 (16)0.0141 (17)0.0018 (17)
N20.047 (2)0.039 (2)0.040 (2)−0.0006 (18)0.0201 (18)−0.0035 (17)
C10.066 (3)0.042 (3)0.072 (4)0.000 (3)0.028 (3)0.003 (3)
C20.077 (4)0.060 (4)0.078 (4)0.001 (3)0.043 (3)0.021 (3)
C30.071 (4)0.069 (4)0.081 (4)0.003 (3)0.049 (3)0.011 (3)
C40.055 (3)0.046 (3)0.060 (3)0.007 (2)0.030 (3)0.010 (2)
C50.037 (3)0.039 (3)0.037 (3)−0.005 (2)0.014 (2)−0.002 (2)
C60.044 (3)0.040 (3)0.055 (3)−0.005 (2)0.021 (2)0.001 (2)
C70.030 (2)0.038 (3)0.037 (3)−0.001 (2)0.007 (2)0.001 (2)
C80.038 (3)0.036 (3)0.043 (3)0.003 (2)0.020 (2)0.002 (2)
C90.038 (2)0.019 (2)0.048 (3)0.0065 (19)0.015 (2)0.002 (2)
C100.055 (3)0.022 (2)0.047 (3)0.002 (2)0.026 (2)−0.004 (2)
C110.060 (3)0.045 (3)0.053 (3)0.007 (2)0.025 (3)−0.005 (2)
C120.084 (4)0.061 (4)0.058 (4)0.000 (3)0.041 (3)−0.011 (3)
C130.094 (4)0.066 (4)0.041 (3)−0.020 (3)0.030 (3)−0.010 (3)
C140.062 (3)0.087 (4)0.033 (3)−0.006 (3)0.014 (3)0.003 (3)
C150.050 (3)0.057 (3)0.050 (3)0.002 (3)0.020 (2)0.001 (2)
C160.030 (2)0.037 (3)0.037 (3)0.009 (2)0.010 (2)0.005 (2)
C170.042 (3)0.043 (3)0.044 (3)0.003 (2)0.019 (2)0.008 (2)
C180.065 (3)0.060 (4)0.044 (3)0.002 (3)0.024 (3)0.012 (3)
C190.064 (3)0.074 (4)0.041 (3)0.009 (3)0.027 (3)0.000 (3)
C200.061 (3)0.058 (4)0.047 (3)−0.007 (3)0.023 (2)−0.010 (3)
C210.039 (3)0.045 (3)0.035 (3)0.006 (2)0.015 (2)0.002 (2)

Geometric parameters (Å, °)

O1—C61.353 (5)C10—C111.382 (6)
O1—H1A0.8347C10—C151.383 (6)
N1—C91.289 (5)C11—C121.375 (6)
N1—C161.402 (5)C11—H11A0.9300
N2—C71.302 (5)C12—C131.361 (7)
N2—C211.414 (5)C12—H12A0.9300
C1—C21.363 (6)C13—C141.375 (6)
C1—C61.385 (6)C13—H13A0.9300
C1—H1C0.9300C14—C151.374 (6)
C2—C31.371 (6)C14—H14A0.9300
C2—H2B0.9300C15—H15A0.9300
C3—C41.372 (6)C16—C171.396 (5)
C3—H3A0.9300C16—C211.404 (6)
C4—C51.397 (6)C17—C181.369 (6)
C4—H4A0.9300C17—H17A0.9300
C5—C61.405 (6)C18—C191.370 (6)
C5—C71.459 (6)C18—H18A0.9300
C7—C81.495 (5)C19—C201.373 (6)
C8—C91.503 (5)C19—H19A0.9300
C8—H8A0.9700C20—C211.392 (5)
C8—H8B0.9700C20—H20A0.9300
C9—C101.491 (5)
C6—O1—H1A108.9C15—C10—C9119.5 (4)
C9—N1—C16119.8 (4)C12—C11—C10120.3 (5)
C7—N2—C21121.4 (4)C12—C11—H11A119.9
C2—C1—C6120.6 (5)C10—C11—H11A119.9
C2—C1—H1C119.7C13—C12—C11121.4 (5)
C6—C1—H1C119.7C13—C12—H12A119.3
C1—C2—C3120.5 (5)C11—C12—H12A119.3
C1—C2—H2B119.7C12—C13—C14118.5 (5)
C3—C2—H2B119.7C12—C13—H13A120.7
C2—C3—C4119.1 (5)C14—C13—H13A120.7
C2—C3—H3A120.4C15—C14—C13121.1 (5)
C4—C3—H3A120.4C15—C14—H14A119.5
C3—C4—C5122.8 (5)C13—C14—H14A119.5
C3—C4—H4A118.6C14—C15—C10120.2 (4)
C5—C4—H4A118.6C14—C15—H15A119.9
C4—C5—C6116.3 (4)C10—C15—H15A119.9
C4—C5—C7121.9 (4)C17—C16—N1116.8 (4)
C6—C5—C7121.7 (4)C17—C16—C21118.3 (4)
O1—C6—C1117.4 (4)N1—C16—C21124.6 (4)
O1—C6—C5122.0 (4)C18—C17—C16121.0 (4)
C1—C6—C5120.6 (4)C18—C17—H17A119.5
N2—C7—C5118.3 (4)C16—C17—H17A119.5
N2—C7—C8119.3 (4)C17—C18—C19120.4 (5)
C5—C7—C8122.3 (4)C17—C18—H18A119.8
C7—C8—C9103.8 (3)C19—C18—H18A119.8
C7—C8—H8A111.0C18—C19—C20120.2 (5)
C9—C8—H8A111.0C18—C19—H19A119.9
C7—C8—H8B111.0C20—C19—H19A119.9
C9—C8—H8B111.0C19—C20—C21120.5 (5)
H8A—C8—H8B109.0C19—C20—H20A119.8
N1—C9—C10118.2 (4)C21—C20—H20A119.8
N1—C9—C8121.2 (4)C20—C21—C16119.5 (4)
C10—C9—C8120.6 (4)C20—C21—N2116.2 (4)
C11—C10—C15118.5 (4)C16—C21—N2124.1 (4)
C11—C10—C9122.0 (4)
C6—C1—C2—C3−0.3 (8)N1—C9—C10—C15−31.4 (6)
C1—C2—C3—C4−0.5 (8)C8—C9—C10—C15145.4 (4)
C2—C3—C4—C50.6 (8)C15—C10—C11—C121.4 (7)
C3—C4—C5—C60.2 (7)C9—C10—C11—C12178.7 (4)
C3—C4—C5—C7178.9 (4)C10—C11—C12—C13−1.7 (8)
C2—C1—C6—O1−178.5 (5)C11—C12—C13—C141.3 (8)
C2—C1—C6—C51.1 (7)C12—C13—C14—C15−0.8 (8)
C4—C5—C6—O1178.6 (4)C13—C14—C15—C100.6 (7)
C7—C5—C6—O1−0.1 (6)C11—C10—C15—C14−0.8 (7)
C4—C5—C6—C1−1.0 (6)C9—C10—C15—C14−178.3 (4)
C7—C5—C6—C1−179.7 (4)C9—N1—C16—C17145.2 (4)
C21—N2—C7—C5−175.6 (3)C9—N1—C16—C21−41.1 (6)
C21—N2—C7—C80.7 (6)N1—C16—C17—C18175.7 (4)
C4—C5—C7—N2−169.8 (4)C21—C16—C17—C181.6 (6)
C6—C5—C7—N28.8 (6)C16—C17—C18—C19−2.4 (7)
C4—C5—C7—C814.0 (6)C17—C18—C19—C200.3 (7)
C6—C5—C7—C8−167.4 (4)C18—C19—C20—C212.5 (7)
N2—C7—C8—C9−71.1 (5)C19—C20—C21—C16−3.3 (7)
C5—C7—C8—C9105.0 (4)C19—C20—C21—N2−177.9 (4)
C16—N1—C9—C10171.1 (4)C17—C16—C21—C201.3 (6)
C16—N1—C9—C8−5.7 (6)N1—C16—C21—C20−172.3 (4)
C7—C8—C9—N175.8 (4)C17—C16—C21—N2175.4 (4)
C7—C8—C9—C10−100.9 (4)N1—C16—C21—N21.8 (6)
N1—C9—C10—C11151.3 (4)C7—N2—C21—C20−143.7 (4)
C8—C9—C10—C11−31.9 (6)C7—N2—C21—C1642.0 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···N20.831.822.563 (5)147
C13—H13A···Cg1i0.933.163.871135
C18—H18A···Cg2ii0.933.133.897142
C19—H19A···Cg1iii0.933.173.682117
C20—H20A···Cg2iii0.933.053.685127

Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) −x+1, −y, −z+1; (iii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2658).

References

  • Abu-Hussen, A. A. A. (2006). J. Coord. Chem.59, 157–176.
  • Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem.49, 7242–7246. [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Mladenova, R., Ignatova, M., Manolova, N., Petrova, T. & Rashkov, I. (2002). Eur. Polym. J.38, 989–1000.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem.41, 147–153. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography