PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1599.
Published online 2008 November 22. doi:  10.1107/S1600536808038385
PMCID: PMC2960131

Poly[di-μ3-chlorido-[μ2-(3-pyrid­yl)(4-pyrid­yl)methanone-κ2 N:N′]dicopper(I)]

Abstract

In the title compound, [Cu2Cl2(C11H8N2O)]n, stair-like ribbons of formula [Cu2Cl2]n are linked into coordination polymer layers by tethering (3-pyrid­yl)(4-pyrid­yl)methanone (3,4′-dpk) ligands. The two distinct CuI centres both adopt distorted CuNCl3 tetra­hedral coordinations. Individual [Cu2Cl2(3,4′-dpk)]n layers stack in an AB pattern along the c direction by way of weak C—H(...)O inter­actions between the pyridyl rings and ketone O atoms.

Related literature

For copper molybdate coordination polymers with (3-pyridyl)(4-pyridyl)­methanone and the synthesis of this ligand, see: Montney & LaDuca (2008 [triangle]). For data-handling software, see: Sheldrick (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1599-scheme1.jpg

Experimental

Crystal data

  • [Cu2Cl2(C11H8N2O)]
  • M r = 382.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1599-efi2.jpg
  • a = 3.7765 (7) Å
  • b = 25.935 (5) Å
  • c = 12.339 (2) Å
  • β = 94.462 (3)°
  • V = 1204.9 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.96 mm−1
  • T = 173 (2) K
  • 0.22 × 0.14 × 0.08 mm

Data collection

  • Bruker SMART 1K CCD diffractometer
  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2007 [triangle]) T min = 0.503, T max = 0.731
  • 20010 measured reflections
  • 2794 independent reflections
  • 2435 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.095
  • S = 1.06
  • 2794 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.97 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalMaker (Palmer, 2007 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808038385/hb2839sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038385/hb2839Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

supplementary crystallographic information

Comment

The kinked-donor disposed dipodal tethering ligand (3-pyridyl)(4-pyridyl)methanone (3,4'-dpk) has been rarely utilized for the construction of coordination polymer solids. Two copper molybdate phases incoporating this ligand have been reported recently (Montney & LaDuca, 2008). In an attempt to extend this chemistry into dicarboxylate systems, yellow crystals of the title compound, (I), were obtained.

The asymmetric unit of (I) contains two monovalent copper atoms, two chloride ions and one complete 3,4'-dpk ligand (Fig. 1). The coordination environment at each Cu atom is a distorted {CuCl3N} tetrahedron (Table 1). The Cu and Cl atoms link into [Cu2Cl2]n stair-like ribbons that are oriented parallel to the a crystal direction. The Cu···Cu distances across the `steps' of the stair-like ribbons measure 2.857 (1) Å and 3.153 (1) Å, respectively.

Parallel [Cu2Cl2]n ribbons are covalently connected into [Cu2Cl2(3,4'-dpk)]n coordination polymer layers, arranged parallel to the ab crystal planes, via the tethering 3,4'-dpk ligands (Fig. 2). The Cu···Cu contact distances across the diimine ligands measure 11.573 (3) Å. The dihedral angle between the pyridyl rings within a 3,4'-dpk ligand is 46.53 (17)°. Individual [Cu2Cl2(3,4'-dpk)]n layers stack in an AB pattern along the c crystal direction through weak C—H···O supramolecular interactions between the pyridyl rings and ketone O atoms (Fig. 3), with a C···O contact distance of 3.112 (5) Å (Table 2).

Experimental

All chemicals were obtained commercially with the exception of (3-pyridyl)(4-pyridyl)methanone (Montney & LaDuca, 2008). A mixture of copper(II) chloride dihydrate (63 mg, 0.37 mmol), phthalic acid (61 mg, 0.37 mmol), (3-pyridyl)(4-pyridyl)methanone (136 mg, 0.74 mmol) and 10.0 g water (555 mmol) was placed in a 23 ml Teflon-lined Parr acid digestion bomb, which was then heated under autogenous pressure at 393 K for 48 h. Yellow–orange blocks of (I) were obtained.

Refinement

Reflection data were collected on a non-merohedrally twinned crystal. The twin law was determined with CELL-NOW (Sheldrick, 2003). The structure was solved and refined using reflections from only the major twin component, whose reflection file was generated using TWINABS (Sheldrick, 2007). All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å and refined in riding mode with Uiso = 1.2Ueq(C).

Figures

Fig. 1.
Asymmetric unit of (I), expanded to show the metal coordination spheres, showing 50% probability ellipsoids. Hydrogen atom positions are shown as gray sticks. Symmetry codes: (1) x - 1, y, z (ii) -x, y - 1/2, -z + 1/2
Fig. 2.
A single [Cu2Cl2(3,4'-dpk)]n layer in (I) formed by the linkage of [Cu2Cl2]n ladders through the diimine ligands.
Fig. 3.
Packing diagram illustrating the AB layer stacking pattern, which forms the 3-D crystal structure of (I) through weak C—H···O interactions between pyridyl rings and ketone O atoms.

Crystal data

[Cu2Cl2(C11H8N2O)]F000 = 752
Mr = 382.17Dx = 2.107 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20010 reflections
a = 3.7765 (7) Åθ = 1.6–28.3º
b = 25.935 (5) ŵ = 3.96 mm1
c = 12.339 (2) ÅT = 173 (2) K
β = 94.462 (3)ºBlock, yellow
V = 1204.9 (4) Å30.22 × 0.14 × 0.08 mm
Z = 4

Data collection

Bruker SMART 1K CCD diffractometer2794 independent reflections
Radiation source: fine-focus sealed tube2435 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.042
T = 173(2) Kθmax = 28.3º
ω scansθmin = 1.6º
Absorption correction: multi-scan(TWINABS; Sheldrick, 2007)h = −5→4
Tmin = 0.503, Tmax = 0.731k = 0→34
20010 measured reflectionsl = 0→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.095  w = 1/[σ2(Fo2) + (0.0339P)2 + 4.4918P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2794 reflectionsΔρmax = 0.97 e Å3
163 parametersΔρmin = −0.48 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections for the major twin component. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.30817 (14)0.633401 (18)0.12987 (4)0.03284 (15)
Cu2−0.09246 (14)0.576023 (18)0.27566 (4)0.03282 (15)
Cl10.4078 (2)0.62217 (3)0.33820 (6)0.01995 (17)
Cl20.7724 (2)0.58732 (3)0.07265 (7)0.02118 (18)
N10.1879 (8)0.70719 (11)0.0999 (2)0.0217 (6)
C20.2012 (9)0.79762 (13)0.1460 (3)0.0186 (6)
N20.1356 (8)0.99919 (11)0.2175 (2)0.0228 (6)
C80.2454 (9)0.89246 (12)0.2191 (3)0.0193 (7)
C70.1332 (10)0.91779 (14)0.3097 (3)0.0237 (7)
H70.09730.89950.37280.028*
C10.2845 (9)0.74576 (13)0.1677 (3)0.0205 (7)
H10.41390.73780.23270.025*
O10.4939 (9)0.82138 (10)0.3137 (2)0.0371 (7)
C90.2995 (9)0.92152 (14)0.1272 (3)0.0224 (7)
H90.36960.90580.06460.027*
C5−0.0002 (10)0.71977 (14)0.0055 (3)0.0238 (7)
H5−0.07290.6934−0.04230.029*
C4−0.0885 (10)0.76977 (14)−0.0230 (3)0.0236 (7)
H4−0.21240.7768−0.08950.028*
C30.0094 (9)0.80956 (13)0.0486 (3)0.0210 (7)
H3−0.05230.84350.03160.025*
C100.2469 (9)0.97448 (13)0.1308 (3)0.0216 (7)
H100.29110.99390.06990.026*
C60.0756 (10)0.97045 (14)0.3052 (3)0.0252 (7)
H6−0.00830.98670.36530.030*
C110.3264 (10)0.83580 (13)0.2312 (3)0.0218 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0365 (3)0.0196 (2)0.0417 (3)0.00451 (19)−0.0013 (2)−0.0024 (2)
Cu20.0436 (3)0.0188 (2)0.0359 (3)−0.0030 (2)0.0024 (2)−0.00250 (19)
Cl10.0204 (4)0.0227 (4)0.0165 (4)−0.0004 (3)−0.0001 (3)−0.0049 (3)
Cl20.0234 (4)0.0203 (4)0.0197 (4)0.0012 (3)0.0005 (3)−0.0002 (3)
N10.0223 (15)0.0191 (14)0.0232 (15)0.0003 (11)−0.0024 (11)0.0000 (11)
C20.0198 (16)0.0178 (15)0.0181 (15)0.0006 (12)0.0008 (12)−0.0004 (12)
N20.0243 (15)0.0187 (14)0.0251 (15)−0.0012 (11)0.0001 (12)−0.0002 (12)
C80.0227 (17)0.0155 (15)0.0191 (16)−0.0016 (12)−0.0020 (13)−0.0007 (12)
C70.035 (2)0.0209 (17)0.0149 (16)−0.0059 (14)0.0029 (14)−0.0002 (13)
C10.0234 (17)0.0195 (16)0.0177 (16)0.0010 (13)−0.0035 (13)0.0006 (13)
O10.0581 (19)0.0229 (13)0.0270 (14)0.0042 (13)−0.0178 (13)−0.0015 (11)
C90.0263 (18)0.0235 (17)0.0174 (16)0.0006 (14)0.0021 (13)−0.0013 (13)
C50.0278 (18)0.0210 (16)0.0219 (17)−0.0008 (14)−0.0021 (14)−0.0069 (14)
C40.0273 (19)0.0265 (18)0.0162 (16)0.0018 (14)−0.0040 (13)0.0006 (13)
C30.0235 (17)0.0200 (16)0.0192 (16)0.0032 (13)0.0002 (13)0.0022 (13)
C100.0233 (17)0.0224 (17)0.0190 (16)−0.0014 (13)0.0009 (13)0.0043 (13)
C60.035 (2)0.0191 (17)0.0219 (17)−0.0034 (14)0.0056 (15)−0.0053 (14)
C110.0265 (18)0.0185 (16)0.0197 (16)0.0001 (13)−0.0025 (13)0.0010 (13)

Geometric parameters (Å, °)

Cu1—N11.995 (3)C8—C91.390 (5)
Cu1—Cl22.2787 (10)C8—C71.391 (5)
Cu1—Cl2i2.4081 (10)C8—C111.506 (5)
Cu1—Cl12.5854 (11)C7—C61.383 (5)
Cu2—N2ii2.002 (3)C7—H70.9300
Cu2—Cl12.3173 (10)C1—H10.9300
Cu2—Cl1i2.4118 (10)O1—C111.216 (4)
Cu2—Cl2i2.5343 (11)C9—C101.389 (5)
N1—C11.336 (4)C9—H90.9300
N1—C51.356 (5)C5—C41.378 (5)
C2—C31.389 (5)C5—H50.9300
C2—C11.403 (5)C4—C31.390 (5)
C2—C111.494 (5)C4—H40.9300
N2—C101.343 (5)C3—H30.9300
N2—C61.348 (5)C10—H100.9300
N2—Cu2iii2.002 (3)C6—H60.9300
N1—Cu1—Cl2127.98 (9)C10—N2—Cu2iii122.7 (2)
N1—Cu1—Cl2i104.34 (9)C6—N2—Cu2iii119.9 (2)
Cl2—Cu1—Cl2i107.34 (4)C9—C8—C7118.2 (3)
N1—Cu1—Cl1107.80 (9)C9—C8—C11124.6 (3)
Cl2—Cu1—Cl1101.13 (3)C7—C8—C11117.0 (3)
Cl2i—Cu1—Cl1106.83 (3)C6—C7—C8119.4 (3)
N1—Cu1—Cu2119.49 (9)C6—C7—H7120.3
Cl2—Cu1—Cu2112.32 (3)C8—C7—H7120.3
Cl2i—Cu1—Cu256.78 (3)N1—C1—C2123.5 (3)
Cl1—Cu1—Cu250.09 (2)N1—C1—H1118.2
N2ii—Cu2—Cl1124.54 (9)C2—C1—H1118.2
N2ii—Cu2—Cl1i114.36 (9)C10—C9—C8118.7 (3)
Cl1—Cu2—Cl1i105.97 (4)C10—C9—H9120.7
N2ii—Cu2—Cl2i98.38 (9)C8—C9—H9120.7
Cl1—Cu2—Cl2i111.46 (3)N1—C5—C4123.1 (3)
Cl1i—Cu2—Cl2i99.00 (3)N1—C5—H5118.5
N2ii—Cu2—Cu1126.42 (9)C4—C5—H5118.5
Cl1—Cu2—Cu158.85 (3)C5—C4—C3119.3 (3)
Cl1i—Cu2—Cu1114.14 (3)C5—C4—H4120.3
Cl2i—Cu2—Cu152.64 (3)C3—C4—H4120.3
Cu2—Cl1—Cu2iv105.97 (4)C2—C3—C4118.7 (3)
Cu2—Cl1—Cu171.05 (3)C2—C3—H3120.7
Cu2iv—Cl1—Cu178.15 (3)C4—C3—H3120.7
Cu1—Cl2—Cu1iv107.34 (4)N2—C10—C9123.5 (3)
Cu1—Cl2—Cu2iv81.67 (3)N2—C10—H10118.3
Cu1iv—Cl2—Cu2iv70.58 (3)C9—C10—H10118.3
C1—N1—C5117.2 (3)N2—C6—C7122.9 (3)
C1—N1—Cu1123.7 (2)N2—C6—H6118.6
C5—N1—Cu1119.1 (2)C7—C6—H6118.6
C3—C2—C1118.2 (3)O1—C11—C2120.1 (3)
C3—C2—C11125.2 (3)O1—C11—C8118.1 (3)
C1—C2—C11116.6 (3)C2—C11—C8121.8 (3)
C10—N2—C6117.3 (3)
N1—Cu1—Cu2—N2ii158.68 (15)Cl2—Cu1—N1—C1−95.8 (3)
Cl2—Cu1—Cu2—N2ii−26.27 (12)Cl2i—Cu1—N1—C1138.1 (3)
Cl2i—Cu1—Cu2—N2ii70.41 (11)Cl1—Cu1—N1—C124.8 (3)
Cl1—Cu1—Cu2—N2ii−112.18 (12)Cu2—Cu1—N1—C178.4 (3)
N1—Cu1—Cu2—Cl1−89.14 (10)Cl2—Cu1—N1—C583.7 (3)
Cl2—Cu1—Cu2—Cl185.91 (4)Cl2i—Cu1—N1—C5−42.4 (3)
Cl2i—Cu1—Cu2—Cl1−177.41 (4)Cl1—Cu1—N1—C5−155.8 (3)
N1—Cu1—Cu2—Cl1i5.53 (10)Cu2—Cu1—N1—C5−102.1 (3)
Cl2—Cu1—Cu2—Cl1i−179.41 (4)C9—C8—C7—C60.8 (5)
Cl2i—Cu1—Cu2—Cl1i−82.74 (4)C11—C8—C7—C6176.2 (3)
Cl1—Cu1—Cu2—Cl1i94.67 (4)C5—N1—C1—C20.1 (5)
N1—Cu1—Cu2—Cl2i88.27 (10)Cu1—N1—C1—C2179.6 (3)
Cl2—Cu1—Cu2—Cl2i−96.67 (4)C3—C2—C1—N1−0.3 (5)
Cl1—Cu1—Cu2—Cl2i177.41 (4)C11—C2—C1—N1179.3 (3)
N2ii—Cu2—Cl1—Cu2iv44.13 (12)C7—C8—C9—C101.4 (5)
Cl1i—Cu2—Cl1—Cu2iv180.0C11—C8—C9—C10−173.6 (3)
Cl2i—Cu2—Cl1—Cu2iv−73.30 (4)C1—N1—C5—C40.9 (6)
Cu1—Cu2—Cl1—Cu2iv−71.09 (3)Cu1—N1—C5—C4−178.6 (3)
N2ii—Cu2—Cl1—Cu1115.22 (11)N1—C5—C4—C3−1.7 (6)
Cl1i—Cu2—Cl1—Cu1−108.91 (3)C1—C2—C3—C4−0.5 (5)
Cl2i—Cu2—Cl1—Cu1−2.21 (3)C11—C2—C3—C4179.9 (3)
N1—Cu1—Cl1—Cu2113.91 (9)C5—C4—C3—C21.5 (5)
Cl2—Cu1—Cl1—Cu2−109.88 (4)C6—N2—C10—C90.5 (5)
Cl2i—Cu1—Cl1—Cu22.26 (3)Cu2iii—N2—C10—C9175.9 (3)
N1—Cu1—Cl1—Cu2iv−134.42 (9)C8—C9—C10—N2−2.1 (6)
Cl2—Cu1—Cl1—Cu2iv1.79 (3)C10—N2—C6—C71.8 (6)
Cl2i—Cu1—Cl1—Cu2iv113.93 (3)Cu2iii—N2—C6—C7−173.7 (3)
Cu2—Cu1—Cl1—Cu2iv111.67 (3)C8—C7—C6—N2−2.5 (6)
N1—Cu1—Cl2—Cu1iv55.05 (12)C3—C2—C11—O1−179.8 (4)
Cl2i—Cu1—Cl2—Cu1iv180.0C1—C2—C11—O10.6 (5)
Cl1—Cu1—Cl2—Cu1iv−68.25 (4)C3—C2—C11—C81.3 (5)
Cu2—Cu1—Cl2—Cu1iv−119.49 (3)C1—C2—C11—C8−178.3 (3)
N1—Cu1—Cl2—Cu2iv121.61 (11)C9—C8—C11—O1131.7 (4)
Cl2i—Cu1—Cl2—Cu2iv−113.44 (3)C7—C8—C11—O1−43.4 (5)
Cl1—Cu1—Cl2—Cu2iv−1.69 (3)C9—C8—C11—C2−49.4 (5)
Cu2—Cu1—Cl2—Cu2iv−52.93 (3)C7—C8—C11—C2135.5 (4)

Symmetry codes: (i) x−1, y, z; (ii) −x, y−1/2, −z+1/2; (iii) −x, y+1/2, −z+1/2; (iv) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···O1v0.932.353.112 (5)139

Symmetry codes: (v) x−1, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2839).

References

  • Bruker (2003). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Montney, M. R. & LaDuca, R. L. (2008). J. Solid State Chem.181, 828—836.
  • Palmer, D. (2007). Crystal Maker CrystalMaker Software, Bicester, Oxfordshire, England.
  • Sheldrick, G. M. (2003). CELL-NOW University of Göttingen, Germany.
  • Sheldrick, G. M. (2007). TWINABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography