PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2322–o2323.
Published online 2008 November 13. doi:  10.1107/S1600536808036313
PMCID: PMC2960128

N-Butyl-4-chloro­benzamide

Abstract

In the title benzamide derivative, C11H14ClNO, the chloro­benzene and butyl­amine groups are each planar, with mean deviations from the planes of 0.013 and 0.030 Å, respectively, and a dihedral angle of 2.54 (9)° between the two planes. In the crystal structure, N—H(...)O hydrogen bonds link mol­ecules in rows along a. Short inter­molecular Cl(...)Cl inter­actions [3.4225 (5) Å] link these rows into sheets in the ac plane. Additional weak C—H(...)O and C—H(...)π inter­actions generate a three-dimensional network.

Related literature

For details of the biological activity of benzanilides, see: Olsson et al., (2002 [triangle]); Lindgren et al. (2001 [triangle]); Calderone et al. (2006 [triangle]). For the use of benzamides in organic synthesis, see: Reinaud et al. (1991 [triangle]); Zhichkin et al. (2007 [triangle]); Beccalli et al. (2005 [triangle]); For the fluorescence properties of benzanilides, see: Lewis & Long (1998 [triangle]). For related structures see: Saeed et al. (2008 [triangle]); Hempel et al. (2005 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]). For related literature, see: Vega-Noverola et al. (1989 [triangle]); Yoo et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2322-scheme1.jpg

Experimental

Crystal data

  • C11H14ClNO
  • M r = 211.68
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2322-efi1.jpg
  • a = 5.1702 (4) Å
  • b = 7.8979 (5) Å
  • c = 13.2978 (9) Å
  • α = 89.275 (3)°
  • β = 84.863 (4)°
  • γ = 77.165 (4)°
  • V = 527.29 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.33 mm−1
  • T = 81 (2) K
  • 0.42 × 0.30 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.820, T max = 0.974
  • 6632 measured reflections
  • 3445 independent reflections
  • 3050 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.090
  • S = 1.04
  • 3445 reflections
  • 132 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and TITAN2000 (Hunter & Simpson, 1999 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004 [triangle]), PLATON (Spek, 2003 [triangle]) and publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036313/sg2272sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036313/sg2272Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

NA gratefully acknowledges financial support for a PhD programme by the Higher Education Commission of Pakistan. We also thank the University of Otago for purchase of the diffractometer.

supplementary crystallographic information

Comment

The benzanilide core is present in compounds with such a wide range of biological activities that it has been called a privileged structure. N-substituted benzamides are well known anticancer compounds and the mechanism of action for N-substituted benzamide-induced apoptosis has been studied, using declopramide as a lead compound (Olsson et al., 2002). N-substituted benzamides inhibit the activity of nuclear factor- B and nuclear factor of activated T cells activity while inducing activator protein 1 activity in T lymphocytes (Lindgren et al., 2001). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-noverola et al., 1989), while heterocyclic analogs of benzanilide derivatives are potassium channel activators (Calderone et al., 2006). o-Aryloxylation of N-substituted benzamides induced by the copper(II)/trimethylamine N-oxide system has been studied (Reinaud et al., 1991). N-Alkylated 2-nitrobenzamides are intermediates in the synthesis of dibenzo[b,e][1,4]diazepines (Zhichkin et al., 2007) and N-Acyl-2-nitrobenzamides are precursors of 2,3-disubstitued 3H-quinazoline-4-ones (Beccalli et al., 2005). A one-pot conversion of 2-nitro-n-arylbenzamides to 2,3-dihydro-1H-quinazoline-4-ones has also been reported (Yoo et al., 2005). The anomalous dual fluorescence of benzanilides has been assigned to the two lowest benzanilide singlet states (Lewis & Long, 1998)

As part of our work on the structure of benzanildes and related compounds, we report here the structure of the title benzamide derivative, I, Fig. 1. The C1···C7/Cl system is planar with a maximum deviation of 0.0161 (7) Å from the least squares plane. The carbonyl oxygen atom O1 is displaced by 0.6102 (10) Å from this plane. The butylamine N1/C8···C11 fragment is also planar, maximum deviation 0.0365 (7) Å for C9. The dihedral angle between these two planes is 2.54 (9) °. Bond distances within the molecule are normal (Allen et al., 1987) and similar to those found in the structures of related 4-chlorobenzamide derivatives (Saeed et al., 2008, Hempel et al., 2005).

In the crystal structure N1—HN1···O1 hydrogen bonds, Table 1, link molecules into rows along a. Cl1···Cl1 interactions at 3.4225 (5) Å bridge these rows to form sheets in the ac plane, Fig. 2. The sheets are interconnected by weak C3—H3···O1 hydrogen bonds and C8—H8···π interactions involving the C2···C7 benzene ring to generate a three dimensional network, Fig. 3.

Experimental

2-Fluorobenzoyl chloride (1 mmol) in CHCl3 was treated with cyclohexyl amine (3.5 mmol) under a nitrogen atmosphere at reflux for 5 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with 1 M aq HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in ethanol afforded the title compound (79 %) as white needles: Anal. calcd. for C11H14ClNO: C 62.41, H 6.67, N 6.62%; found: C 62.34, H 7.16, N 6.57%.

Refinement

The H atom bound to N1 was located in a difference electron density map and refined freely with an isotropic displacement parameter. All other H-atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso= 1.2Ueq (C) for aromatic, 0.99Å, Uiso = 1.2Ueq (C) for CH2, and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms.

Figures

Fig. 1.
The structure of I showing the atom numbering with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Sheets of molecules of I formed in the ac plane by N—H···O hydrogen bonds and Cl···Cl interactions.
Fig. 3.
Crystal packing of I viewed down the b axis.

Crystal data

C11H14ClNOZ = 2
Mr = 211.68F000 = 224
Triclinic, P1Dx = 1.333 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 5.1702 (4) ÅCell parameters from 3494 reflections
b = 7.8979 (5) Åθ = 5.3–66.2º
c = 13.2978 (9) ŵ = 0.33 mm1
α = 89.275 (3)ºT = 81 (2) K
β = 84.863 (4)ºIrregular fragment, colourless
γ = 77.165 (4)º0.42 × 0.30 × 0.08 mm
V = 527.29 (6) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer3445 independent reflections
Radiation source: fine-focus sealed tube3050 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.017
T = 81(2) Kθmax = 33.1º
ω scansθmin = 3.1º
Absorption correction: multi-scan(SADABS; Bruker, 2006)h = −7→6
Tmin = 0.820, Tmax = 0.974k = −11→11
6632 measured reflectionsl = −20→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090  w = 1/[σ2(Fo2) + (0.0471P)2 + 0.125P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
3445 reflectionsΔρmax = 0.43 e Å3
132 parametersΔρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.51637 (16)0.82511 (10)−0.10915 (6)0.01587 (15)
HN10.662 (3)0.8260 (18)−0.0876 (11)0.026 (3)*
C10.31476 (17)0.79695 (10)−0.04475 (6)0.01281 (15)
O10.08420 (13)0.81551 (8)−0.06861 (5)0.01616 (14)
C20.38267 (17)0.73835 (10)0.05917 (6)0.01257 (15)
C30.18549 (19)0.78474 (11)0.13885 (7)0.01611 (17)
H30.01690.85450.12620.019*
C40.2331 (2)0.73001 (12)0.23650 (7)0.01847 (18)
H40.09950.76310.29080.022*
C50.4800 (2)0.62579 (11)0.25329 (7)0.01667 (17)
Cl10.54360 (5)0.55693 (3)0.375283 (17)0.02530 (8)
C60.67765 (19)0.57568 (12)0.17528 (7)0.01740 (17)
H60.84390.50270.18790.021*
C70.62886 (18)0.63406 (11)0.07801 (7)0.01532 (16)
H70.76420.60260.02410.018*
C80.47533 (19)0.87979 (13)−0.21289 (7)0.01730 (17)
H8A0.42811.0082−0.21520.021*
H8B0.32420.8363−0.23520.021*
C90.72100 (18)0.81319 (12)−0.28494 (7)0.01526 (16)
H9A0.76640.6847−0.28400.018*
H9B0.87330.8549−0.26230.018*
C100.67469 (19)0.87506 (12)−0.39261 (7)0.01705 (17)
H10A0.51120.8435−0.41230.020*
H10B0.64581.0032−0.39430.020*
C110.9070 (2)0.79692 (14)−0.46899 (8)0.02213 (19)
H11A1.06960.8277−0.45000.033*
H11B0.86910.8425−0.53630.033*
H11C0.93170.6703−0.46980.033*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0106 (3)0.0251 (4)0.0134 (3)−0.0064 (3)−0.0033 (3)0.0048 (3)
C10.0120 (4)0.0133 (3)0.0131 (4)−0.0024 (3)−0.0018 (3)0.0006 (3)
O10.0097 (3)0.0217 (3)0.0170 (3)−0.0028 (2)−0.0029 (2)0.0024 (2)
C20.0115 (4)0.0138 (3)0.0131 (4)−0.0038 (3)−0.0025 (3)0.0013 (3)
C30.0132 (4)0.0188 (4)0.0154 (4)−0.0017 (3)−0.0005 (3)0.0009 (3)
C40.0185 (4)0.0224 (4)0.0140 (4)−0.0043 (3)0.0006 (3)0.0006 (3)
C50.0213 (4)0.0170 (4)0.0138 (4)−0.0074 (3)−0.0055 (3)0.0036 (3)
Cl10.03326 (15)0.02986 (13)0.01517 (12)−0.00986 (10)−0.00874 (9)0.00705 (8)
C60.0160 (4)0.0180 (4)0.0184 (4)−0.0030 (3)−0.0058 (3)0.0038 (3)
C70.0117 (4)0.0177 (4)0.0159 (4)−0.0019 (3)−0.0015 (3)0.0016 (3)
C80.0121 (4)0.0261 (4)0.0137 (4)−0.0040 (3)−0.0022 (3)0.0059 (3)
C90.0115 (4)0.0202 (4)0.0143 (4)−0.0034 (3)−0.0028 (3)0.0018 (3)
C100.0138 (4)0.0230 (4)0.0139 (4)−0.0032 (3)−0.0020 (3)0.0029 (3)
C110.0185 (5)0.0300 (5)0.0170 (4)−0.0043 (4)0.0006 (3)−0.0014 (3)

Geometric parameters (Å, °)

N1—C11.3446 (12)C6—H60.9500
N1—C81.4598 (11)C7—H70.9500
N1—HN10.831 (15)C8—C91.5185 (13)
C1—O11.2378 (11)C8—H8A0.9900
C1—C21.4984 (12)C8—H8B0.9900
C2—C31.3952 (12)C9—C101.5290 (12)
C2—C71.3955 (12)C9—H9A0.9900
C3—C41.3891 (13)C9—H9B0.9900
C3—H30.9500C10—C111.5242 (13)
C4—C51.3918 (13)C10—H10A0.9900
C4—H40.9500C10—H10B0.9900
C5—C61.3848 (14)C11—H11A0.9800
C5—Cl11.7405 (9)C11—H11B0.9800
C6—C71.3931 (12)C11—H11C0.9800
C1—N1—C8121.48 (8)N1—C8—C9112.18 (7)
C1—N1—HN1119.5 (10)N1—C8—H8A109.2
C8—N1—HN1118.4 (10)C9—C8—H8A109.2
O1—C1—N1122.89 (8)N1—C8—H8B109.2
O1—C1—C2120.60 (8)C9—C8—H8B109.2
N1—C1—C2116.51 (8)H8A—C8—H8B107.9
C3—C2—C7119.40 (8)C8—C9—C10111.15 (7)
C3—C2—C1117.87 (8)C8—C9—H9A109.4
C7—C2—C1122.67 (8)C10—C9—H9A109.4
C4—C3—C2120.71 (8)C8—C9—H9B109.4
C4—C3—H3119.6C10—C9—H9B109.4
C2—C3—H3119.6H9A—C9—H9B108.0
C3—C4—C5118.78 (9)C11—C10—C9112.75 (8)
C3—C4—H4120.6C11—C10—H10A109.0
C5—C4—H4120.6C9—C10—H10A109.0
C6—C5—C4121.65 (8)C11—C10—H10B109.0
C6—C5—Cl1118.96 (7)C9—C10—H10B109.0
C4—C5—Cl1119.39 (7)H10A—C10—H10B107.8
C5—C6—C7118.95 (8)C10—C11—H11A109.5
C5—C6—H6120.5C10—C11—H11B109.5
C7—C6—H6120.5H11A—C11—H11B109.5
C6—C7—C2120.49 (9)C10—C11—H11C109.5
C6—C7—H7119.8H11A—C11—H11C109.5
C2—C7—H7119.8H11B—C11—H11C109.5
C8—N1—C1—O1−0.14 (13)C3—C4—C5—Cl1179.68 (7)
C8—N1—C1—C2179.00 (8)C4—C5—C6—C71.22 (14)
O1—C1—C2—C3−30.72 (12)Cl1—C5—C6—C7−178.56 (7)
N1—C1—C2—C3150.11 (8)C5—C6—C7—C2−1.35 (13)
O1—C1—C2—C7146.41 (9)C3—C2—C7—C60.37 (13)
N1—C1—C2—C7−32.76 (12)C1—C2—C7—C6−176.72 (8)
C7—C2—C3—C40.79 (13)C1—N1—C8—C9−149.00 (8)
C1—C2—C3—C4178.01 (8)N1—C8—C9—C10−178.91 (7)
C2—C3—C4—C5−0.92 (14)C8—C9—C10—C11−174.52 (8)
C3—C4—C5—C6−0.10 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—HN1···O1i0.831 (15)2.203 (15)3.0164 (10)166.3 (13)
C3—H3···O1ii0.952.663.3146 (11)127
C8—H8A···Cg1iii0.992.843.697 (16)145

Symmetry codes: (i) x+1, y, z; (ii) −x, −y+2, −z; (iii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2272).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Beccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61–68.
  • Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Calderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem 41, 761–767. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hempel, A., Camerman, N., Mastropaolo, D. & Camerman, A. (2005). Acta Cryst. E61, o2283–o2285.
  • Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  • Lewis, F. D. & Long, T. M. (1998). J. Phys. Chem. A, 102, 5327–5332.
  • Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol 38, 267–277. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971–978. [PMC free article] [PubMed]
  • Reinaud, O., Capdevielle, P. & Maumy, M. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 2129–2134,.
  • Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.
  • Westrip, S. P. (2008). publCIF In preparation.
  • Yoo, C. L., Fettinger, J. C. & Kurth, M. J. (2005). J. Org. Chem 70, 6941–6943. [PubMed]
  • Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett 9, 1415–1418. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography