PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2484–o2485.
Published online 2008 November 29. doi:  10.1107/S1600536808039111
PMCID: PMC2960116

A bi-TTF with a bipyridine spacer: 4,4′-bis­[(3,6,7-trimethyl­sulfanyltetra­thia­fulvalen-2-yl)sulfanylmeth­yl]-2,2′-bipyridine

Abstract

The title compound, C30H28N2S16, is a precursor to hybrid magnetic materials. The complete molecule is generated by a crystallographic inversion centre. In the crystal structure, the TTF core is not planar and adopts a chair conformation; the two C3S2 rings are folded around the S(...)S hinges, the dihedral angles being 17.14 (8) and 13.46 (7)°. There is a short S(...)S contact [3.4863  (14) Å] in the crystal structure.

Related literature

For general background, see: Yagubskii (1993 [triangle]); Williams et al. (1992 [triangle]); Sakata et al. (1998 [triangle]); Fabre (2002 [triangle]). For coordination complexes of TTF with nitro­gen aromatic substituents, see: Setifi et al. (2003 [triangle]); Liu et al. (2003 [triangle]); Boudiba et al. (2005 [triangle]). For the double Wittig coupling reaction used in the synthesis of the bi-TTF(bipyridine), see: Ikeda et al. (1993 [triangle]); Gonzales et al. (2000 [triangle]). For the synthesis of the precursors, see: Doria et al. (1986 [triangle]); Hudhomme et al. (2006 [triangle]); Blanchard et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2484-scheme1.jpg

Experimental

Crystal data

  • C30H28N2S16
  • M r = 929.50
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2484-efi1.jpg
  • a = 7.4840 (12) Å
  • b = 7.7691 (11) Å
  • c = 17.707 (3) Å
  • α = 88.973 (12)°
  • β = 80.071 (13)°
  • γ = 72.245 (13)°
  • V = 965.2 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.92 mm−1
  • T = 293 (2) K
  • 0.19 × 0.11 × 0.06 mm

Data collection

  • Oxford Diffraction XCalibur diffractometer with CCD detector
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.884, T max = 0.937
  • 6690 measured reflections
  • 3391 independent reflections
  • 1942 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.070
  • S = 0.83
  • 3391 reflections
  • 220 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), CAMERON (Watkin et al., 1993 [triangle]) and ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808039111/nc2124sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039111/nc2124Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Dr Laure Vendier for collecting the data. This work was in part achieved in the framework of a Franco-Algerian Cooperation Programme (PROFAS); we warmly thank the participating organizations.

supplementary crystallographic information

Comment

To date the search for solids presenting two physical properties such as magnetism and electrical conductivity inside a same material has expanded greatly, particularly with materials involving tetrathiafulvalene (TTF) derivatives well known to provide conducting and even superconducting salts (Williams et al., 1992; Yagubskii,1993; Sakata et al., 1998: Fabre, 2002). To introduce a magnetic network, involving localized spins, inside such conducting salts, a particularly promising way is to build a coordination complex between a transition metal (Cu, Co ···) and a pyridine or bipyridine moiety bonded to a TTF core (Setifi et al., 2003; Liu et al., 2003; Boudiba et al., 2005). Following this strategy we synthesized the title precursor: bi-TTF(bipyridine) 1 and studied its crystal structure to verify if the molecular geometry could allow a subsequent easy formation of the target coordinating complex. The molecular structure is shown in Fig. 1. A s expected two TTF cores bearing methylsulfanyl substituents are connected by a bipyridine spacer. The molecule lies on a crystallographic centre of symmetry located at the centre of the bipyridine moiety, the asymmetric unit is thus composed of half a molecule. As a result the bipyridine spacer is in the trans conformation. The TTF cores deviate strongly from planarity and take a chair conformation. The two C3S2 rings are folded around the S···S hinges: the central group S3/S4/C5/C6/S5/S6 is planar and the external planes S3/S4/C3/C4 and S5/S6/C7/C8 make dihedral angles of 17.14 (8)° and 13.46 (7)° respectively. There is a short S⋯S contact [3.4863 (14) Å] in the crystal structure.

Experimental

The bi-TTF(bipyridine) 1 was synthesized (37% yield) by using a double Wittig coupling reaction (Ikeda, 1993; Gonzalez, 2000) between two appropriate formyl-TTF units and 4,4'-bis(methyltripenylphosphonium)-2,2'-bipyridinedibromide previously obtained as described in the literature (Doria, 1986). Red crystals (m.p.: 158°C) of 1 were obtained as thin platelets by slow evaporation of a solution of 1 in a mixture of dichloromethane-acetonitrile.

Refinement

H atoms were located in a difference map then positioned geometrically and refined using a riding model with C—H distances set to 0.96 Å (sp3) and 0.93 Å (sp2), and Uiso(H) egal to 1.2 times the equivalent Uiso of the atom of attachment.

Figures

Fig. 1.
The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. Symmetry code: i = -x+1, -y+1, -z+1.

Crystal data

C30H28N2S16Z = 1
Mr = 929.50F000 = 478
Triclinic, P1Dx = 1.599 Mg m3
Hall symbol: -P 1Melting point: 431 K
a = 7.4840 (12) ÅMo Kα radiation λ = 0.71073 Å
b = 7.7691 (11) ÅCell parameters from 1223 reflections
c = 17.707 (3) Åθ = 2.9–25.0º
α = 88.973 (12)ºµ = 0.92 mm1
β = 80.071 (13)ºT = 293 (2) K
γ = 72.245 (13)ºBlock, red
V = 965.2 (3) Å30.19 × 0.11 × 0.06 mm

Data collection

Oxford Diffraction XCalibur diffractometer with CCD detector3391 independent reflections
Radiation source: fine-focus sealed tube1942 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.039
T = 293(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.9º
Absorption correction: multi-scan(Blessing, 1995)h = −8→8
Tmin = 0.884, Tmax = 0.937k = −9→9
6690 measured reflectionsl = −18→21

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.071  w = 1/[σ2(Fo2) + (0.0277P)2] where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max = 0.013
3391 reflectionsΔρmax = 0.23 e Å3
220 parametersΔρmin = −0.21 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. Excalibur (Oxford Diffraction) four-circle Kappa geometry diffractometer equipped with an area CCD detector. Crystal-detector distance (mm): 70.0
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.3976 (5)0.7011 (5)0.9533 (2)0.0573 (11)
H1A−0.36920.60810.91420.069*
H1B−0.52510.72120.98060.069*
H1C−0.30950.66420.98840.069*
C20.0146 (6)1.2151 (5)0.9481 (2)0.0681 (13)
H2A−0.01351.15310.99380.082*
H2B−0.00701.34020.96090.082*
H2C0.14551.16120.92470.082*
C3−0.1411 (4)0.8506 (4)0.86485 (17)0.0307 (8)
C4−0.0438 (4)0.9702 (4)0.85327 (17)0.0300 (8)
C50.1986 (4)0.6686 (4)0.79718 (18)0.0339 (8)
C60.3591 (4)0.5317 (4)0.77605 (17)0.0325 (8)
C70.6075 (4)0.2257 (4)0.72586 (16)0.0271 (8)
C80.7017 (4)0.3475 (4)0.71193 (17)0.0277 (8)
C90.5564 (5)−0.0019 (4)0.62192 (17)0.0366 (8)
H9A0.5827−0.12350.60280.044*
H9B0.42320.04320.64330.044*
C100.9345 (5)0.4866 (5)0.6095 (2)0.0711 (13)
H10A0.84690.49620.57480.085*
H10B1.05970.47180.58090.085*
H10C0.89440.59440.64170.085*
C110.6020 (4)0.1130 (4)0.55723 (17)0.0296 (8)
C120.5025 (4)0.2947 (4)0.55804 (17)0.0308 (8)
H120.40200.34540.59790.037*
C130.5516 (4)0.4015 (4)0.49995 (17)0.0276 (8)
C140.7883 (5)0.1602 (4)0.44029 (19)0.0381 (9)
H140.88690.11180.39950.046*
C150.7491 (4)0.0458 (4)0.49646 (17)0.0351 (8)
H150.8209−0.07570.49350.042*
N10.6944 (4)0.3353 (3)0.44078 (14)0.0343 (7)
S1−0.37725 (13)0.90564 (13)0.91017 (6)0.0500 (3)
S2−0.13591 (13)1.19803 (12)0.88259 (5)0.0442 (3)
S3−0.02471 (12)0.63191 (11)0.82438 (5)0.0408 (2)
S40.18635 (13)0.89647 (12)0.79792 (5)0.0451 (3)
S50.37241 (12)0.30319 (11)0.77697 (5)0.0419 (3)
S60.58066 (12)0.56994 (11)0.74683 (5)0.0409 (3)
S70.69659 (12)−0.00222 (11)0.69692 (5)0.0333 (2)
S80.93880 (12)0.29726 (12)0.66720 (5)0.0453 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.051 (2)0.054 (3)0.064 (3)−0.026 (2)0.017 (2)−0.008 (2)
C20.108 (4)0.050 (3)0.059 (3)−0.032 (3)−0.034 (3)0.001 (2)
C30.0287 (19)0.033 (2)0.0275 (19)−0.0055 (15)−0.0035 (15)0.0019 (15)
C40.0294 (19)0.0278 (19)0.0287 (19)−0.0028 (15)−0.0052 (15)−0.0004 (15)
C50.0280 (19)0.0282 (19)0.045 (2)−0.0107 (16)−0.0004 (16)0.0009 (16)
C60.0274 (19)0.0291 (19)0.038 (2)−0.0093 (16)0.0030 (16)−0.0033 (16)
C70.0237 (18)0.0235 (19)0.0299 (19)−0.0010 (14)−0.0044 (15)−0.0019 (14)
C80.0224 (18)0.0268 (19)0.0293 (18)−0.0038 (15)0.0014 (15)−0.0034 (15)
C90.042 (2)0.031 (2)0.041 (2)−0.0131 (16)−0.0135 (18)0.0027 (16)
C100.046 (3)0.083 (3)0.079 (3)−0.027 (2)0.011 (2)0.025 (3)
C110.0317 (19)0.0278 (19)0.033 (2)−0.0109 (15)−0.0132 (16)0.0020 (15)
C120.0281 (18)0.033 (2)0.0307 (19)−0.0090 (15)−0.0052 (15)0.0016 (15)
C130.0264 (18)0.0279 (18)0.0290 (18)−0.0063 (14)−0.0098 (15)0.0016 (15)
C140.031 (2)0.038 (2)0.041 (2)−0.0062 (17)−0.0012 (17)−0.0046 (17)
C150.036 (2)0.0276 (19)0.040 (2)−0.0027 (16)−0.0142 (18)−0.0004 (17)
N10.0322 (16)0.0298 (17)0.0366 (17)−0.0053 (13)−0.0019 (14)0.0005 (13)
S10.0310 (5)0.0449 (6)0.0615 (7)−0.0045 (4)0.0131 (5)−0.0036 (5)
S20.0453 (6)0.0301 (5)0.0517 (6)−0.0035 (4)−0.0073 (5)−0.0098 (4)
S30.0268 (5)0.0278 (5)0.0627 (6)−0.0086 (4)0.0076 (5)−0.0077 (4)
S40.0335 (5)0.0282 (5)0.0667 (7)−0.0098 (4)0.0105 (5)−0.0042 (5)
S50.0310 (5)0.0280 (5)0.0620 (7)−0.0109 (4)0.0086 (5)−0.0017 (4)
S60.0281 (5)0.0266 (5)0.0636 (7)−0.0094 (4)0.0061 (5)−0.0077 (4)
S70.0382 (5)0.0230 (5)0.0360 (5)−0.0030 (4)−0.0107 (4)0.0023 (4)
S80.0246 (5)0.0390 (5)0.0627 (7)−0.0041 (4)0.0075 (5)−0.0003 (5)

Geometric parameters (Å, °)

C1—S11.788 (3)C8—S81.741 (3)
C1—H1A0.9599C8—S61.755 (3)
C1—H1B0.9599C9—C111.497 (4)
C1—H1C0.9599C9—S71.828 (3)
C2—S21.783 (4)C9—H9A0.9600
C2—H2A0.9599C9—H9B0.9600
C2—H2B0.9599C10—S81.771 (3)
C2—H2C0.9599C10—H10A0.9599
C3—C41.338 (4)C10—H10B0.9599
C3—S11.736 (3)C10—H10C0.9599
C3—S31.756 (3)C11—C121.380 (4)
C4—S21.744 (3)C11—C151.380 (4)
C4—S41.758 (3)C12—C131.381 (4)
C5—C61.340 (4)C12—H120.9300
C5—S41.744 (3)C13—N11.342 (4)
C5—S31.765 (3)C13—C13i1.489 (6)
C6—S51.747 (3)C14—N11.327 (4)
C6—S61.762 (3)C14—C151.376 (4)
C7—C81.339 (4)C14—H140.9300
C7—S71.743 (3)C15—H150.9300
C7—S51.761 (3)
S1—C1—H1A109.5C11—C9—H9B109.4
S1—C1—H1B109.5S7—C9—H9B109.4
H1A—C1—H1B109.5H9A—C9—H9B108.0
S1—C1—H1C109.5S8—C10—H10A109.5
H1A—C1—H1C109.5S8—C10—H10B109.5
H1B—C1—H1C109.5H10A—C10—H10B109.5
S2—C2—H2A109.5S8—C10—H10C109.5
S2—C2—H2B109.5H10A—C10—H10C109.5
H2A—C2—H2B109.5H10B—C10—H10C109.5
S2—C2—H2C109.5C12—C11—C15117.1 (3)
H2A—C2—H2C109.5C12—C11—C9120.7 (3)
H2B—C2—H2C109.5C15—C11—C9122.2 (3)
C4—C3—S1123.6 (2)C11—C12—C13120.3 (3)
C4—C3—S3116.7 (2)C11—C12—H12119.9
S1—C3—S3119.55 (18)C13—C12—H12119.9
C3—C4—S2124.6 (2)N1—C13—C12122.5 (3)
C3—C4—S4117.5 (2)N1—C13—C13i116.2 (3)
S2—C4—S4117.70 (18)C12—C13—C13i121.3 (4)
C6—C5—S4124.5 (2)N1—C14—C15124.1 (3)
C6—C5—S3121.8 (2)N1—C14—H14118.0
S4—C5—S3113.67 (18)C15—C14—H14118.0
C5—C6—S5124.6 (2)C14—C15—C11119.3 (3)
C5—C6—S6121.5 (2)C14—C15—H15120.3
S5—C6—S6113.88 (18)C11—C15—H15120.3
C8—C7—S7125.6 (2)C14—N1—C13116.8 (3)
C8—C7—S5117.1 (2)C3—S1—C1104.34 (16)
S7—C7—S5117.26 (17)C4—S2—C2101.90 (17)
C7—C8—S8124.6 (2)C3—S3—C594.78 (15)
C7—C8—S6117.1 (2)C5—S4—C494.69 (15)
S8—C8—S6118.20 (17)C6—S5—C795.17 (14)
C11—C9—S7111.1 (2)C8—S6—C695.04 (15)
C11—C9—H9A109.4C7—S7—C999.50 (14)
S7—C9—H9A109.4C8—S8—C10102.28 (16)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2124).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Blanchard, P., Dugauy, G., Cousseau, J., Sallé, M., Jubault, M., Gorgues, A., Boubekeur, K. & Batail, P. (1993). Synth. Met.55–57, 2113–2117.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Boudiba, L., Gouasmia, A. K., Kaboub, L., Cador, O., Ouahab, L. & Fabre, J.-M. (2005). Synth. Met.150, 317–320.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Doria, G., Passarotti, C., Sala, R., Magrini, R., Sberze, P., Tibolla, M., Ceserani, R. & Castello, R. (1986). Farm. Ed. Sci.41, 417–428. [PubMed]
  • Fabre, J.-M. (2002). J. Solid State Chem.168, 367–383.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gonzalez, A., Segura, J. L. & Martin, N. (2000). Tetrahedron Lett.41, 3083–3086.
  • Hudhomme, P., Sallé, M., Gautier, N., Belyasmine, A. & Gorgues, A. (2006). Arkoivoc, iv, 49–72.
  • Ikeda, K., Kawabata, K., Tanaka, K. & Mizutani, M. (1993). Synth. Met.55–57, 2007–2012.
  • Liu, H.-X., Dolder, S., Franz, P., Neels, A., Stoeckli-Evans, H. & Decurtins, S. (2003). Inorg. Chem.42, 4801–4803. [PubMed]
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sakata, J. I., Sato, H., Misayaki, A., Enoki, T., Okano, Y. & Kato, R. (1998). Solid State Commun.108, 377–381.
  • Setifi, F., Ouahab, L., Gohlen, S., Yoshida, Y. & Saito, G. (2003). Inorg. Chem.42, 1791–1793. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Watkin, D. M., Pearce, L. & Prout, C. K. A. (1993). CAMERON University of Oxford, England.
  • Williams, J. M., Ferraro, J. R., Thorn, R. I., Carlson, K. D., Geiser, U., Wang, H. H. A. M., Kini, A. M. & Wangbo, M. H. (1992). Organic Superconductors (including Fullerenes), Synthesis, Structure, Properties and Theory Englewood Cliffs, NJ: Prentice Hall.
  • Yagubskii, E. B. (1993). Mol. Cryst. Liq. Cryst.230, 139–156.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography