PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1622–m1623.
Published online 2008 November 26. doi:  10.1107/S1600536808038439
PMCID: PMC2960114

Diaqua-2κ2 O-bis­(μ-1-oxido-2-naphtho­ato)-1:2κ3 O 1,O 2:O 2′;2:3κ3 O 2:O 1,O 2′-bis­(1-oxido-2-naphthoato)-1κ1 O 2,O 2;3κ2 O 1,O 2-hexa­pyridine-1κ2 N,2κ2 N,3κ2 N-trimanganese(II/III) pyridine disolvate dihydrate

Abstract

The title complex, [Mn3(C11H6O3)4(C5H5N)6(H2O)2]·2H2O·2C5H5N, is a trinuclear mixed oxidation state complex of An external file that holds a picture, illustration, etc.
Object name is e-64-m1622-efi1.jpg symmetry. The three Mn atoms are six-coordinated in the shape of distorted octa­hedra, each coordinated with an O4N2 set of donor atoms, where the ligands exhibit mono- and bidentate modes. However, the coordination of the MnII ion located on the inversion centre involves water mol­ecules at two coordination sites, whereas that of the two symmetry-related MnIII ions involves an O4N2 set of donor atoms orginating from the organic ligands. Intramolecular C—H(...)π interactions between neighbouring pyridine ligands stabilize this arrangement. A two-dimensional network parallel to (001) is formed by inter­molecular O—H(...)O hydrogen bonds.

Related literature

For the crystal synthesis of metal complexes with hydroxy­naphthoates, see: Schmidt et al. (2005 [triangle]); Ohki et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1622-scheme1.jpg

Experimental

Crystal data

  • [Mn3(C11H6O3)4(C5H5N)6(H2O)2]·2H2O·2C5H5N
  • M r = 1614.32
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1622-efi2.jpg
  • a = 9.962 (3) Å
  • b = 10.170 (3) Å
  • c = 19.812 (5) Å
  • α = 77.624 (3)°
  • β = 89.053 (4)°
  • γ = 85.370 (4)°
  • V = 1954.2 (10) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.55 mm−1
  • T = 298 (2) K
  • 0.45 × 0.44 × 0.16 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.790, T max = 0.917
  • 10152 measured reflections
  • 6766 independent reflections
  • 3917 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.154
  • S = 1.00
  • 6766 reflections
  • 502 parameters
  • 744 restraints
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808038439/kp2187sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038439/kp2187Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the Natural Science Foundation of Liaocheng University (grant No. X051002) for support.

supplementary crystallographic information

Comment

Multi-nuclear coordinated polymer attracted more attention in coordination chemistry. But transition metal complexes with hydroxynaphthoates as ligand have rarely been synthesized or crystallized except for some lanthanoids (Ohki et al., 1987) and manganese complexes (Schmidt et al., 2005). In this paper the synthesis of the title complex [Mn3(C11H6O3)4(C5H5N)6(H2O)2] (H2O)2(C5H5N)2was reported. Black-brown crystals suitable for X-ray diffraction studies were obtained by slow evaporation of the mother liquid.

The title complex is centrosymmetrical with Mn(II)1 llocated at an inversion centre (Fig. 1, Table 1). Mn(II) was partially oxidized into Mn(III). The three Mn atoms are coordinated octahedrall by four O atoms in the equatorial plane and two pyridine N atoms in axial positions. Mn(II)1 is coordinated by two water molecules and two carboxyl O atoms where ligands act as monodentate bridnging towards Mn(III). The octahedral coordination is completed by two pyridne ligands. Mn(III)2 and Mn(III)2 A reveal the four O atoms from bidentate ligands and two axially positioned pyridine ligands. In the structure, there are intramolecular C—H···π interactions between axially positioned py ligands (Table 2). The complex exhibits a two-dimensional hydrogen bonding network via intermolecular interactions O—H..O between coordinated and solvent water molecules, and solvent water and ligand carbonyl group (Table 1, Fig. 2).

Experimental

MnCl2 4H2O (0.2 mmol 0.040 g) was dissolved in 5 a ml MeOH and a solution of (0.15 mmol 0.0305 g) of 1-hydroxy-naphthoic acid and (0.30 mmol 0.02 g) MeONa in 10 ml py was added dropwise. The reaction mixture was stirred for 4 h until the solution colour became brown. The mixture was filtered and black-brown single crystals were obtained by slow evaporation of the mother liquid for three weeks at room temperature. m.p.>573 K. Elemental analysis for C84H72Mn3N8O16 calculated: C 62.50, H 4.50 N 6.94%; found: C 62.43, H 4.23, N 6.81%.

Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H 0.93 Å (Phenyl and water) [Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.
Molecular structure of the complex showing the atomic numbering and the 30% probability displacement ellipsoids. Unlabelled atoms are related to the labelled ones by symmetry operation (-x, -y, -z). C-bound H atoms have been omitted for clarity.
Fig. 2.
Crystal packing of (I).

Crystal data

[Mn3(C11H6O3)4(C5H5N)6(H2O)2]·2H2O·2C5H5NZ = 1
Mr = 1614.32F000 = 835
Triclinic, P1Dx = 1.372 Mg m3
Hall symbol: 1-PMo Kα radiation λ = 0.71073 Å
a = 9.962 (3) ÅCell parameters from 2741 reflections
b = 10.170 (3) Åθ = 2.5–24.1º
c = 19.812 (5) ŵ = 0.55 mm1
α = 77.624 (3)ºT = 298 (2) K
β = 89.053 (4)ºBlock, brown
γ = 85.370 (4)º0.45 × 0.44 × 0.16 mm
V = 1954.2 (10) Å3

Data collection

Bruker SMART CCD area-detector diffractometer6766 independent reflections
Radiation source: fine-focus sealed tube3917 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.028
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −10→11
Tmin = 0.790, Tmax = 0.917k = −12→11
10152 measured reflectionsl = −23→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.154  w = 1/[σ2(Fo2) + (0.0726P)2 + 0.4474P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
6766 reflectionsΔρmax = 0.41 e Å3
502 parametersΔρmin = −0.26 e Å3
744 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.50001.00001.00000.0415 (2)
Mn20.31927 (6)0.89477 (5)0.79249 (3)0.0442 (2)
N10.6800 (3)1.1017 (3)0.94749 (15)0.0452 (8)
N20.5084 (4)0.9964 (3)0.73905 (17)0.0526 (9)
N30.1291 (4)0.7993 (3)0.84414 (19)0.0586 (10)
N40.3397 (9)0.2282 (9)0.4436 (5)0.181 (3)
O10.3432 (3)0.9767 (2)0.86811 (12)0.0504 (7)
O20.3692 (3)1.1346 (2)0.92360 (13)0.0473 (7)
O30.2133 (3)1.0462 (2)0.74539 (12)0.0461 (7)
O40.4274 (3)0.7444 (2)0.84399 (12)0.0516 (7)
O50.5211 (3)0.5389 (3)0.87570 (13)0.0647 (9)
O60.3025 (3)0.8103 (2)0.71921 (12)0.0485 (7)
O70.4426 (3)1.1701 (3)1.04953 (13)0.0540 (8)
H7A0.42531.24341.02010.065*
H7B0.50341.18061.07710.065*
O80.6500 (3)0.5604 (3)0.00202 (16)0.0808 (10)
H8A0.61070.5533−0.03460.097*
H8B0.59990.53170.03630.097*
C10.3224 (4)1.1007 (3)0.87274 (18)0.0366 (9)
C20.1979 (4)1.1666 (3)0.76049 (18)0.0358 (8)
C30.2463 (4)1.1986 (3)0.81975 (17)0.0358 (8)
C40.2202 (4)1.3317 (3)0.83051 (19)0.0431 (9)
H40.25281.35250.87040.052*
C50.1499 (4)1.4291 (4)0.7850 (2)0.0525 (11)
H50.13351.51510.79390.063*
C60.1009 (4)1.4007 (4)0.7235 (2)0.0453 (10)
C70.1253 (4)1.2701 (3)0.71042 (18)0.0402 (9)
C80.0810 (4)1.2435 (4)0.6485 (2)0.0518 (10)
H80.09551.15690.64020.062*
C90.0164 (5)1.3439 (4)0.6000 (2)0.0657 (13)
H9−0.00961.32630.55810.079*
C10−0.0104 (5)1.4724 (4)0.6134 (3)0.0733 (14)
H10−0.05691.53950.58090.088*
C110.0302 (4)1.5004 (4)0.6728 (2)0.0606 (12)
H110.01151.58690.68080.073*
C120.4649 (4)0.6277 (4)0.83032 (19)0.0453 (10)
C130.3609 (4)0.6937 (3)0.71167 (18)0.0381 (9)
C140.4379 (4)0.6037 (3)0.76172 (18)0.0411 (9)
C150.4924 (5)0.4784 (4)0.7471 (2)0.0562 (11)
H150.54410.41800.78040.067*
C160.4701 (5)0.4461 (4)0.6858 (2)0.0632 (12)
H160.50540.36310.67820.076*
C170.3950 (4)0.5346 (4)0.6335 (2)0.0511 (10)
C180.3395 (4)0.6602 (4)0.64584 (18)0.0418 (9)
C190.2650 (4)0.7498 (4)0.59377 (19)0.0510 (10)
H190.22900.83230.60180.061*
C200.2445 (5)0.7181 (5)0.5313 (2)0.0625 (12)
H200.19540.77870.49700.075*
C210.2978 (5)0.5939 (5)0.5194 (2)0.0700 (13)
H210.28310.57190.47710.084*
C220.3703 (5)0.5054 (5)0.5685 (2)0.0666 (12)
H220.40490.42340.55930.080*
C230.7989 (5)1.0328 (4)0.9457 (2)0.0593 (12)
H230.80720.94160.96680.071*
C240.9085 (5)1.0897 (5)0.9146 (3)0.0766 (14)
H240.99011.03830.91470.092*
C250.8976 (5)1.2238 (5)0.8829 (3)0.0782 (15)
H250.97111.26490.86070.094*
C260.7758 (5)1.2958 (5)0.8849 (3)0.0727 (14)
H260.76521.38730.86460.087*
C270.6708 (5)1.2312 (4)0.9171 (2)0.0558 (11)
H270.58821.28050.91790.067*
C280.5048 (5)1.0388 (5)0.6709 (2)0.0659 (12)
H280.43061.02110.64740.079*
C290.6030 (6)1.1066 (5)0.6333 (3)0.0772 (14)
H290.59661.13310.58550.093*
C300.7098 (6)1.1345 (5)0.6673 (3)0.0806 (15)
H300.77791.18220.64330.097*
C310.7167 (6)1.0922 (6)0.7368 (3)0.0860 (16)
H310.79011.10910.76110.103*
C320.6142 (6)1.0244 (5)0.7706 (3)0.0743 (14)
H320.61940.99660.81840.089*
C330.0188 (6)0.8033 (5)0.8077 (3)0.0890 (16)
H330.01840.84780.76150.107*
C34−0.0945 (7)0.7457 (7)0.8342 (4)0.116 (2)
H34−0.16990.74960.80660.139*
C35−0.0954 (8)0.6816 (7)0.9025 (5)0.121 (2)
H35−0.17090.64060.92230.145*
C360.0160 (9)0.6797 (7)0.9401 (4)0.116 (2)
H360.01840.63800.98680.139*
C370.1250 (6)0.7392 (5)0.9095 (3)0.0863 (16)
H370.20110.73710.93640.104*
C380.2680 (11)0.1573 (9)0.4938 (5)0.148 (3)
H380.29570.14350.53950.178*
C390.1524 (9)0.1041 (8)0.4777 (5)0.129 (3)
H390.10080.05460.51210.154*
C400.1193 (8)0.1246 (8)0.4157 (6)0.122 (2)
H400.04170.08760.40540.147*
C410.1857 (10)0.1948 (8)0.3629 (4)0.123 (2)
H410.15510.20680.31780.148*
C420.2955 (9)0.2465 (8)0.3768 (5)0.124 (2)
H420.34400.29600.34100.148*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0437 (6)0.0356 (4)0.0429 (5)0.0080 (4)−0.0034 (4)−0.0073 (4)
Mn20.0604 (5)0.0328 (3)0.0378 (3)0.0130 (3)−0.0127 (3)−0.0092 (2)
N10.042 (2)0.0400 (18)0.0497 (19)0.0071 (16)−0.0019 (16)−0.0046 (15)
N20.057 (2)0.054 (2)0.046 (2)0.0013 (18)−0.0064 (18)−0.0109 (16)
N30.067 (3)0.048 (2)0.058 (2)0.0035 (19)0.005 (2)−0.0100 (18)
N40.188 (8)0.189 (8)0.167 (8)0.002 (6)0.045 (7)−0.046 (6)
O10.075 (2)0.0348 (14)0.0398 (15)0.0160 (14)−0.0166 (14)−0.0110 (11)
O20.0583 (19)0.0387 (14)0.0457 (16)0.0068 (13)−0.0129 (14)−0.0137 (12)
O30.0611 (19)0.0338 (14)0.0426 (15)0.0101 (13)−0.0202 (13)−0.0097 (11)
O40.073 (2)0.0371 (14)0.0428 (15)0.0197 (14)−0.0171 (14)−0.0129 (12)
O50.100 (3)0.0412 (15)0.0468 (17)0.0294 (16)−0.0212 (16)−0.0079 (13)
O60.066 (2)0.0371 (14)0.0419 (15)0.0150 (13)−0.0146 (13)−0.0122 (11)
O70.065 (2)0.0497 (16)0.0483 (16)0.0146 (14)−0.0200 (14)−0.0168 (13)
O80.089 (3)0.073 (2)0.077 (2)−0.010 (2)−0.0011 (19)−0.0094 (17)
C10.039 (2)0.0328 (19)0.038 (2)0.0040 (17)−0.0018 (17)−0.0089 (16)
C20.036 (2)0.0284 (18)0.0398 (19)0.0022 (16)−0.0024 (16)−0.0024 (15)
C30.034 (2)0.0323 (18)0.0386 (19)0.0007 (16)−0.0040 (16)−0.0039 (15)
C40.047 (2)0.035 (2)0.048 (2)0.0024 (18)−0.0070 (18)−0.0108 (17)
C50.057 (3)0.0304 (19)0.068 (3)0.0041 (19)−0.005 (2)−0.0097 (18)
C60.042 (2)0.0334 (19)0.054 (2)0.0041 (17)−0.0057 (19)0.0019 (17)
C70.036 (2)0.0355 (19)0.045 (2)0.0013 (17)−0.0079 (17)0.0000 (16)
C80.055 (3)0.045 (2)0.052 (2)0.001 (2)−0.012 (2)−0.0017 (18)
C90.069 (3)0.060 (3)0.061 (3)0.003 (2)−0.021 (2)0.003 (2)
C100.074 (3)0.053 (3)0.078 (3)0.007 (2)−0.027 (3)0.016 (2)
C110.059 (3)0.041 (2)0.074 (3)0.011 (2)−0.013 (2)0.002 (2)
C120.059 (3)0.033 (2)0.042 (2)0.0077 (19)−0.002 (2)−0.0076 (17)
C130.043 (2)0.0323 (19)0.039 (2)0.0007 (17)0.0023 (17)−0.0086 (15)
C140.047 (2)0.0343 (19)0.040 (2)0.0048 (18)−0.0011 (18)−0.0078 (16)
C150.068 (3)0.045 (2)0.055 (2)0.017 (2)−0.006 (2)−0.0174 (19)
C160.078 (3)0.047 (2)0.067 (3)0.016 (2)−0.004 (2)−0.026 (2)
C170.053 (3)0.053 (2)0.050 (2)0.002 (2)0.005 (2)−0.0205 (19)
C180.042 (2)0.044 (2)0.041 (2)−0.0040 (18)0.0031 (18)−0.0136 (17)
C190.058 (3)0.049 (2)0.047 (2)−0.001 (2)−0.003 (2)−0.0132 (18)
C200.072 (3)0.069 (3)0.049 (2)−0.003 (2)−0.008 (2)−0.017 (2)
C210.076 (3)0.084 (3)0.057 (3)−0.002 (3)−0.004 (2)−0.033 (2)
C220.076 (3)0.068 (3)0.063 (3)0.006 (2)0.003 (2)−0.035 (2)
C230.048 (3)0.051 (2)0.075 (3)0.007 (2)−0.001 (2)−0.008 (2)
C240.047 (3)0.082 (3)0.095 (4)0.011 (3)0.005 (3)−0.013 (3)
C250.054 (3)0.079 (3)0.095 (4)−0.014 (3)0.012 (3)−0.002 (3)
C260.063 (3)0.058 (3)0.089 (3)−0.004 (3)0.006 (3)0.002 (3)
C270.052 (3)0.047 (2)0.065 (3)0.005 (2)0.003 (2)−0.007 (2)
C280.074 (3)0.067 (3)0.055 (3)−0.003 (3)−0.005 (2)−0.008 (2)
C290.084 (4)0.078 (3)0.065 (3)−0.002 (3)0.006 (3)−0.007 (3)
C300.073 (4)0.073 (3)0.092 (4)−0.007 (3)0.018 (3)−0.011 (3)
C310.065 (4)0.106 (4)0.092 (4)−0.015 (3)−0.006 (3)−0.029 (3)
C320.072 (4)0.087 (3)0.064 (3)−0.002 (3)−0.007 (3)−0.016 (3)
C330.074 (4)0.078 (4)0.111 (4)−0.001 (3)0.003 (4)−0.013 (3)
C340.078 (4)0.103 (5)0.168 (6)−0.004 (4)0.007 (5)−0.033 (4)
C350.103 (5)0.088 (4)0.171 (6)−0.018 (4)0.064 (5)−0.029 (4)
C360.131 (6)0.088 (4)0.120 (5)−0.016 (4)0.044 (5)−0.003 (4)
C370.101 (4)0.073 (3)0.081 (4)−0.007 (3)0.018 (3)−0.010 (3)
C380.141 (7)0.176 (7)0.120 (6)0.000 (6)0.013 (6)−0.020 (5)
C390.110 (6)0.113 (5)0.152 (6)−0.007 (4)0.033 (5)−0.007 (5)
C400.086 (5)0.113 (5)0.171 (7)0.017 (4)0.006 (5)−0.046 (5)
C410.115 (6)0.117 (5)0.133 (6)0.044 (5)−0.016 (5)−0.033 (4)
C420.121 (6)0.109 (5)0.133 (6)0.013 (5)0.028 (5)−0.017 (4)

Geometric parameters (Å, °)

Mn1—O22.180 (2)C14—C151.430 (5)
Mn1—O2i2.180 (2)C15—C161.350 (5)
Mn1—O7i2.198 (2)C15—H150.9300
Mn1—O72.198 (2)C16—C171.400 (5)
Mn1—N1i2.268 (3)C16—H160.9300
Mn1—N12.268 (3)C17—C221.413 (5)
Mn2—O61.854 (2)C17—C181.418 (5)
Mn2—O31.874 (2)C18—C191.400 (5)
Mn2—O11.891 (2)C19—C201.367 (5)
Mn2—O41.909 (2)C19—H190.9300
Mn2—N32.321 (4)C20—C211.395 (6)
Mn2—N22.349 (4)C20—H200.9300
N1—C271.322 (5)C21—C221.349 (6)
N1—C231.331 (5)C21—H210.9300
N2—C321.315 (6)C22—H220.9300
N2—C281.326 (5)C23—C241.353 (6)
N3—C371.309 (6)C23—H230.9300
N3—C331.319 (6)C24—C251.370 (6)
N4—C381.331 (10)C24—H240.9300
N4—C421.373 (10)C25—C261.370 (7)
O1—C11.284 (4)C25—H250.9300
O2—C11.242 (4)C26—C271.357 (6)
O3—C21.318 (4)C26—H260.9300
O4—C121.297 (4)C27—H270.9300
O5—C121.235 (4)C28—C291.361 (6)
O6—C131.316 (4)C28—H280.9300
O7—H7A0.8500C29—C301.350 (7)
O7—H7B0.8501C29—H290.9300
O8—H8A0.8500C30—C311.351 (7)
O8—H8B0.8500C30—H300.9300
C1—C31.458 (5)C31—C321.363 (7)
C2—C31.388 (5)C31—H310.9300
C2—C71.438 (5)C32—H320.9300
C3—C41.418 (5)C33—C341.359 (8)
C4—C51.346 (5)C33—H330.9300
C4—H40.9300C34—C351.371 (9)
C5—C61.413 (5)C34—H340.9300
C5—H50.9300C35—C361.343 (9)
C6—C71.408 (5)C35—H350.9300
C6—C111.416 (5)C36—C371.357 (8)
C7—C81.398 (5)C36—H360.9300
C8—C91.369 (5)C37—H370.9300
C8—H80.9300C38—C391.381 (10)
C9—C101.393 (6)C38—H380.9300
C9—H90.9300C39—C401.247 (10)
C10—C111.346 (6)C39—H390.9300
C10—H100.9300C40—C411.332 (10)
C11—H110.9300C40—H400.9300
C12—C141.464 (5)C41—C421.308 (10)
C13—C141.390 (5)C41—H410.9300
C13—C181.440 (5)C42—H420.9300
O2—Mn1—O2i180.00 (11)C13—C14—C15119.1 (3)
O2—Mn1—O7i103.30 (9)C13—C14—C12123.9 (3)
O2i—Mn1—O7i76.70 (9)C15—C14—C12117.0 (3)
O2—Mn1—O776.70 (9)C16—C15—C14121.2 (4)
O2i—Mn1—O7103.30 (9)C16—C15—H15119.4
O7i—Mn1—O7180.00 (10)C14—C15—H15119.4
O2—Mn1—N1i90.93 (11)C15—C16—C17121.6 (4)
O2i—Mn1—N1i89.07 (11)C15—C16—H16119.2
O7i—Mn1—N1i92.12 (11)C17—C16—H16119.2
O7—Mn1—N1i87.88 (11)C16—C17—C22123.4 (4)
O2—Mn1—N189.07 (11)C16—C17—C18119.0 (4)
O2i—Mn1—N190.93 (11)C22—C17—C18117.5 (4)
O7i—Mn1—N187.88 (11)C19—C18—C17119.5 (3)
O7—Mn1—N192.12 (11)C19—C18—C13121.0 (3)
N1i—Mn1—N1180.0C17—C18—C13119.5 (3)
O6—Mn2—O390.31 (10)C20—C19—C18121.0 (4)
O6—Mn2—O1177.65 (12)C20—C19—H19119.5
O3—Mn2—O191.78 (10)C18—C19—H19119.5
O6—Mn2—O492.30 (10)C19—C20—C21119.4 (4)
O3—Mn2—O4177.38 (10)C19—C20—H20120.3
O1—Mn2—O485.61 (10)C21—C20—H20120.3
O6—Mn2—N390.47 (13)C22—C21—C20121.0 (4)
O3—Mn2—N390.79 (13)C22—C21—H21119.5
O1—Mn2—N390.58 (13)C20—C21—H21119.5
O4—Mn2—N389.02 (13)C21—C22—C17121.5 (4)
O6—Mn2—N289.72 (12)C21—C22—H22119.3
O3—Mn2—N287.78 (12)C17—C22—H22119.3
O1—Mn2—N289.28 (12)N1—C23—C24122.9 (4)
O4—Mn2—N292.40 (12)N1—C23—H23118.6
N3—Mn2—N2178.56 (12)C24—C23—H23118.6
C27—N1—C23117.4 (4)C23—C24—C25119.2 (5)
C27—N1—Mn1121.4 (3)C23—C24—H24120.4
C23—N1—Mn1121.1 (3)C25—C24—H24120.4
C32—N2—C28116.2 (4)C26—C25—C24118.3 (5)
C32—N2—Mn2126.2 (3)C26—C25—H25120.8
C28—N2—Mn2117.3 (3)C24—C25—H25120.8
C37—N3—C33116.8 (5)C27—C26—C25118.8 (4)
C37—N3—Mn2122.8 (4)C27—C26—H26120.6
C33—N3—Mn2120.4 (4)C25—C26—H26120.6
C38—N4—C42118.3 (10)N1—C27—C26123.3 (4)
C1—O1—Mn2130.2 (2)N1—C27—H27118.3
C1—O2—Mn1123.5 (2)C26—C27—H27118.3
C2—O3—Mn2127.3 (2)N2—C28—C29124.0 (5)
C12—O4—Mn2130.9 (2)N2—C28—H28118.0
C13—O6—Mn2127.9 (2)C29—C28—H28118.0
Mn1—O7—H7A112.0C30—C29—C28118.2 (5)
Mn1—O7—H7B111.5C30—C29—H29120.9
H7A—O7—H7B109.6C28—C29—H29120.9
H8A—O8—H8B108.4C29—C30—C31119.2 (5)
O2—C1—O1118.0 (3)C29—C30—H30120.4
O2—C1—C3121.1 (3)C31—C30—H30120.4
O1—C1—C3120.9 (3)C30—C31—C32119.0 (5)
O3—C2—C3124.9 (3)C30—C31—H31120.5
O3—C2—C7115.8 (3)C32—C31—H31120.5
C3—C2—C7119.2 (3)N2—C32—C31123.4 (5)
C2—C3—C4119.3 (3)N2—C32—H32118.3
C2—C3—C1123.0 (3)C31—C32—H32118.3
C4—C3—C1117.7 (3)N3—C33—C34123.3 (6)
C5—C4—C3122.2 (3)N3—C33—H33118.3
C5—C4—H4118.9C34—C33—H33118.3
C3—C4—H4118.9C33—C34—C35118.7 (7)
C4—C5—C6120.0 (3)C33—C34—H34120.6
C4—C5—H5120.0C35—C34—H34120.6
C6—C5—H5120.0C36—C35—C34118.1 (7)
C7—C6—C5119.8 (3)C36—C35—H35121.0
C7—C6—C11117.9 (4)C34—C35—H35121.0
C5—C6—C11122.3 (4)C35—C36—C37119.4 (7)
C8—C7—C6119.6 (3)C35—C36—H36120.3
C8—C7—C2120.9 (3)C37—C36—H36120.3
C6—C7—C2119.4 (3)N3—C37—C36123.7 (6)
C9—C8—C7120.5 (4)N3—C37—H37118.2
C9—C8—H8119.7C36—C37—H37118.2
C7—C8—H8119.7N4—C38—C39119.8 (9)
C8—C9—C10119.9 (4)N4—C38—H38120.1
C8—C9—H9120.0C39—C38—H38120.1
C10—C9—H9120.0C40—C39—C38117.9 (9)
C11—C10—C9120.7 (4)C40—C39—H39121.0
C11—C10—H10119.7C38—C39—H39121.0
C9—C10—H10119.7C39—C40—C41125.5 (10)
C10—C11—C6121.2 (4)C39—C40—H40117.2
C10—C11—H11119.4C41—C40—H40117.2
C6—C11—H11119.4C42—C41—C40117.7 (9)
O5—C12—O4119.3 (3)C42—C41—H41121.1
O5—C12—C14121.5 (3)C40—C41—H41121.1
O4—C12—C14119.2 (3)C41—C42—N4120.6 (9)
O6—C13—C14125.1 (3)C41—C42—H42119.7
O6—C13—C18115.3 (3)N4—C42—H42119.7
C14—C13—C18119.6 (3)
O2—Mn1—N1—C2732.6 (3)C5—C6—C7—C21.1 (6)
O2i—Mn1—N1—C27−147.4 (3)C11—C6—C7—C2179.5 (4)
O7i—Mn1—N1—C27136.0 (3)O3—C2—C7—C8−3.0 (5)
O7—Mn1—N1—C27−44.0 (3)C3—C2—C7—C8176.7 (4)
N1i—Mn1—N1—C27153 (100)O3—C2—C7—C6178.2 (3)
O2—Mn1—N1—C23−147.0 (3)C3—C2—C7—C6−2.1 (6)
O2i—Mn1—N1—C2333.0 (3)C6—C7—C8—C91.2 (6)
O7i—Mn1—N1—C23−43.6 (3)C2—C7—C8—C9−177.6 (4)
O7—Mn1—N1—C23136.4 (3)C7—C8—C9—C10−2.6 (7)
N1i—Mn1—N1—C23−27 (100)C8—C9—C10—C112.0 (8)
O6—Mn2—N2—C32−146.6 (4)C9—C10—C11—C6−0.1 (8)
O3—Mn2—N2—C32123.1 (4)C7—C6—C11—C10−1.2 (7)
O1—Mn2—N2—C3231.3 (4)C5—C6—C11—C10177.1 (4)
O4—Mn2—N2—C32−54.3 (4)Mn2—O4—C12—O5−170.7 (3)
N3—Mn2—N2—C32116 (5)Mn2—O4—C12—C148.4 (6)
O6—Mn2—N2—C2838.7 (3)Mn2—O6—C13—C146.7 (6)
O3—Mn2—N2—C28−51.6 (3)Mn2—O6—C13—C18−173.9 (3)
O1—Mn2—N2—C28−143.4 (3)O6—C13—C14—C15178.2 (4)
O4—Mn2—N2—C28131.0 (3)C18—C13—C14—C15−1.1 (6)
N3—Mn2—N2—C28−59 (5)O6—C13—C14—C12−0.2 (6)
O6—Mn2—N3—C37132.4 (4)C18—C13—C14—C12−179.6 (4)
O3—Mn2—N3—C37−137.3 (4)O5—C12—C14—C13171.8 (4)
O1—Mn2—N3—C37−45.5 (4)O4—C12—C14—C13−7.2 (6)
O4—Mn2—N3—C3740.1 (4)O5—C12—C14—C15−6.7 (6)
N2—Mn2—N3—C37−130 (5)O4—C12—C14—C15174.2 (4)
O6—Mn2—N3—C33−47.2 (4)C13—C14—C15—C16−0.1 (7)
O3—Mn2—N3—C3343.1 (4)C12—C14—C15—C16178.5 (4)
O1—Mn2—N3—C33134.9 (4)C14—C15—C16—C171.2 (7)
O4—Mn2—N3—C33−139.5 (4)C15—C16—C17—C22179.4 (5)
N2—Mn2—N3—C3350 (5)C15—C16—C17—C18−1.0 (7)
O6—Mn2—O1—C1137 (3)C16—C17—C18—C19179.6 (4)
O3—Mn2—O1—C1−15.6 (4)C22—C17—C18—C19−0.8 (6)
O4—Mn2—O1—C1164.6 (4)C16—C17—C18—C13−0.3 (6)
N3—Mn2—O1—C1−106.4 (3)C22—C17—C18—C13179.4 (4)
N2—Mn2—O1—C172.1 (3)O6—C13—C18—C192.1 (5)
O2i—Mn1—O2—C1−121 (100)C14—C13—C18—C19−178.5 (4)
O7i—Mn1—O2—C112.9 (3)O6—C13—C18—C17−178.1 (3)
O7—Mn1—O2—C1−167.1 (3)C14—C13—C18—C171.3 (6)
N1i—Mn1—O2—C1−79.5 (3)C17—C18—C19—C200.3 (6)
N1—Mn1—O2—C1100.5 (3)C13—C18—C19—C20−179.9 (4)
O6—Mn2—O3—C2−166.6 (3)C18—C19—C20—C210.5 (7)
O1—Mn2—O3—C212.3 (3)C19—C20—C21—C22−0.6 (7)
O4—Mn2—O3—C217 (3)C20—C21—C22—C170.1 (8)
N3—Mn2—O3—C2102.9 (3)C16—C17—C22—C21−179.7 (5)
N2—Mn2—O3—C2−76.9 (3)C18—C17—C22—C210.6 (7)
O6—Mn2—O4—C12−2.8 (4)C27—N1—C23—C240.0 (7)
O3—Mn2—O4—C12173 (3)Mn1—N1—C23—C24179.6 (4)
O1—Mn2—O4—C12178.3 (4)N1—C23—C24—C25−0.4 (8)
N3—Mn2—O4—C1287.6 (4)C23—C24—C25—C260.9 (8)
N2—Mn2—O4—C12−92.6 (4)C24—C25—C26—C27−1.0 (8)
O3—Mn2—O6—C13175.2 (3)C23—N1—C27—C26−0.1 (6)
O1—Mn2—O6—C1323 (3)Mn1—N1—C27—C26−179.7 (3)
O4—Mn2—O6—C13−4.9 (3)C25—C26—C27—N10.6 (7)
N3—Mn2—O6—C13−94.0 (3)C32—N2—C28—C290.6 (7)
N2—Mn2—O6—C1387.5 (3)Mn2—N2—C28—C29175.9 (4)
Mn1—O2—C1—O16.0 (5)N2—C28—C29—C30−1.1 (8)
Mn1—O2—C1—C3−174.0 (2)C28—C29—C30—C311.2 (8)
Mn2—O1—C1—O2−166.6 (3)C29—C30—C31—C32−1.0 (8)
Mn2—O1—C1—C313.3 (5)C28—N2—C32—C31−0.4 (7)
Mn2—O3—C2—C3−7.9 (5)Mn2—N2—C32—C31−175.2 (4)
Mn2—O3—C2—C7171.8 (2)C30—C31—C32—N20.7 (8)
O3—C2—C3—C4−178.7 (4)C37—N3—C33—C34−1.8 (8)
C7—C2—C3—C41.7 (5)Mn2—N3—C33—C34177.8 (4)
O3—C2—C3—C10.5 (6)N3—C33—C34—C350.9 (10)
C7—C2—C3—C1−179.1 (3)C33—C34—C35—C360.4 (10)
O2—C1—C3—C2176.8 (4)C34—C35—C36—C37−0.7 (11)
O1—C1—C3—C2−3.1 (6)C33—N3—C37—C361.5 (8)
O2—C1—C3—C4−4.0 (5)Mn2—N3—C37—C36−178.2 (4)
O1—C1—C3—C4176.1 (4)C35—C36—C37—N3−0.2 (10)
C2—C3—C4—C5−0.2 (6)C42—N4—C38—C390.1 (13)
C1—C3—C4—C5−179.4 (4)N4—C38—C39—C400.3 (14)
C3—C4—C5—C6−0.9 (6)C38—C39—C40—C41−0.6 (13)
C4—C5—C6—C70.4 (6)C39—C40—C41—C420.4 (13)
C4—C5—C6—C11−177.9 (4)C40—C41—C42—N40.0 (12)
C5—C6—C7—C8−177.7 (4)C38—N4—C42—C41−0.2 (13)
C11—C6—C7—C80.6 (6)

Symmetry codes: (i) −x+1, −y+2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H7A···O8ii0.852.032.799150
O8—H8A···O5iii0.852.042.889178
O8—H8B···O5iv0.852.132.981178
C31—H31···Cgv0.933.223.847127

Symmetry codes: (ii) −x+1, −y+2, −z+1; (iii) x, y, z−1; (iv) −x+1, −y+1, −z+1; (v) −x+2, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2187).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ohki, Y., Suzuki, Y. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 1543–1545.
  • Schmidt, M. U., Alig, E., Fink, L., Bolte, M., Panisch, R., Pashchenko, V., Wolf, B. & Lang, M. (2005). Acta Cryst. C61, m361–m364. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography