PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1535.
Published online 2008 November 13. doi:  10.1107/S1600536808036702
PMCID: PMC2960112

(Dithio­benzoato-κ2 S,S′)[hydridotris(pyrazol-1-yl-κN 2)borato](triphenyl­phosphine-κP)ruthenium(II)

Abstract

Reaction of [Ru(Tp)Cl(PPh3)2] (Tp = hydridotrispyrazolyl­borate) with ammonium dithio­benzoate in methanol leads to the formation of the title compound, [Ru(C9H10BN6)(C7H5S2)(C18H15P)]. In the crystal structure, the Ru atom is coordinated by three N atoms of the Tp ligand, one P atom of the triphenyl­phosphine ligand and the two S atoms of the dithio­benzoate ligand within a slightly distorted octa­hedron. The Ru—S bonds are slightly different [2.321 (1) and 2.396 (1) Å] and the average N—Ru—N angle is 86.31°.

Related literature

For general background, see: Alock et al. (1992 [triangle]); Burrows (2001 [triangle]); Pavlik et al. (2005 [triangle]); Hidai et al. (2000 [triangle]); Vit & Zdrazil (1989 [triangle]). For related structures, see: Gemel et al. (1996 [triangle]); Slugovc et al. (1998 [triangle]); Sellmann et al. (1999 [triangle]); Meno et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1535-scheme1.jpg

Experimental

Crystal data

  • [Ru(C9H10BN6)(C7H5S2)(C18H15P)]
  • M r = 729.61
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1535-efi1.jpg
  • a = 12.8915 (13) Å
  • b = 18.394 (2) Å
  • c = 13.5174 (16) Å
  • β = 96.591 (5)°
  • V = 3184.2 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.71 mm−1
  • T = 200 (2) K
  • 0.18 × 0.12 × 0.02 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.883, T max = 0.986
  • 22786 measured reflections
  • 5557 independent reflections
  • 3974 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.080
  • S = 1.02
  • 5557 reflections
  • 406 parameters
  • H-atom parameters constrained
  • Δρmax = 1.39 e Å−3
  • Δρmin = −0.62 e Å−3

Data collection: COLLECT (Nonius, 1999 [triangle]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808036702/nc2121sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036702/nc2121Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the National Science Council, Taiwan (NSC 97–2113-M-036–001-MY2) and in part by the Project of Specific Research Fields in Tatung University, Taiwan (B96—C07–081), and the Project of Specific Research Fields in Chung Yuan Christian University, Taiwan, under grant No. CYCU-97-CR—CH.

supplementary crystallographic information

Comment

Ruthenium(II) hydridotripyrazolylborate complexes, (Ru(Tp), are of interest for stoichiometric and catalytic transformations of organic molecules (Pavlik et al., 2005). The complex [Ru(Tp)Cl(PPh3)2] (Alock et al., 1992) has been used as the starting material for the synthesis of several complexes because the chloride atom and the phosphine ligand can easily be substituted (Burrows, 2001). On the other hand, the chemistry of transition metal sulfur compounds has attracted much interest for their importance in the field of catalysis and metalloenzymes (Hidai et al., 2000). In recent years there has been an increased interest in ruthenium sulfur complexes, in part because of the high catalytic activity of RuS2 in various hydrotreating processes (Vit & Zdrazil, 1989). Thus, many ruthenium thiolate complexes have been reported. However, ruthenium complexes with dithio ligands are relatively rare (Sellmann et al., 1999). In this context the structure of the title compound was determined.

In the crystal structure of the title compound, the Ru atom is coordinated by three N atoms of the Tp ligand, two S atoms of the dithiobenzoate ligand and one P atom of the triphenylphosphine ligand forming slightly distorted octahedron. The average N—Ru—N angle amount to 86.31° and the three Ru—N bond lengths of 2.141 (3), 2.098 (3) and 2.134 (3) Å are slightly longer than the average distance of 2.038 Å in observed in other RuTp complexes (Gemel et al.1996 and Slugovc et al.1998). The dithiobenzoate ligand chelates the ruthenium centre with slightly different Ru—S bonds of 2.321 (1) Å and and 2.396 (1) Å and an S—Ru—S angle of 71.61 (3)°. The average Ru—S bond length of 2.3588 (11) Å is slightly shorter than in cis-[Ru(S2CNEt2)2(PPh3)2] (av. 2.3952 (5) Å) (Meno et al., 1995).

Experimental

To a solution of [Ru(Tp)Cl(PPh3)2] (3.95 g, 4.50 mmol) in MeOH (20 ml) an excess of [NH4][S2C(C6H5)] (1.71 g, 10 mmol) were added. The reaction mixture was stirred for 4 h at room temperature. The solvent was removed in vacuum and 20 ml of CH2Cl2 were added to the residue. After filtration the solvent was removed in vacuum to give the title compound. Spectroscopic analysis: IR(KBr, cm-1): ν(BH)2467 cm-1.31P NMR(CDCl3, 303 K, δ,p.p.m.): d 58.3 (PPh3). MS (m/z,Ru102): 730.2 (M+), 468.1(M+ - PPh3). Anal. Calcd for C34H30BN6PRuS2: C, 55.97; H,4.14; N, 11.52. Found: C, 55.73; H, 4.11;N, 11.42. The bright-yellow crystals used for X-ray structure analysis were obtained by recrystallization of the crude product from dichloromethane–hexane.

Refinement

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C), B—H = 1.0 Å and Uiso(H) = 1.2Ueq(B).

Figures

Fig. 1.
Molecular structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level (H atoms are shown as spheres of arbitrary radius).

Crystal data

[Ru(C9H10BN6)(C7H5S2)(C18H15P)]F000 = 1488
Mr = 729.61Dx = 1.522 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5326 reflections
a = 12.8915 (13) Åθ = 2.3–24.9º
b = 18.394 (2) ŵ = 0.71 mm1
c = 13.5174 (16) ÅT = 200 (2) K
β = 96.591 (5)ºPrism, green
V = 3184.2 (6) Å30.18 × 0.12 × 0.02 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer5557 independent reflections
Radiation source: fine-focus sealed tube3974 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.056
T = 200(2) Kθmax = 25.0º
CCD rotation images, thick slices scansθmin = 1.9º
Absorption correction: multi-scan(Blessing, 1995)h = −15→12
Tmin = 0.883, Tmax = 0.986k = −21→20
22786 measured reflectionsl = −16→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.080  w = 1/[σ2(Fo2) + (0.0315P)2 + 1.684P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5557 reflectionsΔρmax = 1.39 e Å3
406 parametersΔρmin = −0.62 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. Semi-empirical from equivalents by WinGX (Blessing, 1995)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
B10.3330 (3)0.7338 (2)0.0521 (3)0.0277 (11)
H1'0.38750.70680.01980.033*
C10.3375 (3)0.75212 (19)0.3191 (3)0.0272 (9)
H10.30960.76780.37770.033*
C20.4285 (3)0.7130 (2)0.3191 (3)0.0331 (10)
H20.47390.69700.37520.040*
C30.4393 (3)0.7023 (2)0.2210 (3)0.0283 (9)
H30.49490.67700.19590.034*
C40.2720 (3)0.9240 (2)0.0120 (3)0.0282 (9)
H40.23590.96730.02550.034*
C50.3432 (3)0.9186 (2)−0.0566 (3)0.0334 (10)
H50.36480.9559−0.09830.040*
C60.3760 (3)0.8478 (2)−0.0514 (3)0.0310 (10)
H60.42560.8267−0.08970.037*
C70.0588 (3)0.68809 (19)0.0294 (3)0.0259 (9)
H7−0.01090.69700.04240.031*
C80.0901 (3)0.6302 (2)−0.0258 (3)0.0338 (10)
H80.04740.5927−0.05700.041*
C90.1945 (3)0.6385 (2)−0.0257 (3)0.0327 (10)
H90.23890.6070−0.05740.039*
C100.2846 (3)0.98437 (19)0.2445 (2)0.0191 (8)
C110.2725 (3)1.05912 (19)0.2465 (3)0.0243 (9)
H110.20571.07940.25250.029*
C120.3569 (3)1.1045 (2)0.2400 (3)0.0298 (10)
H120.34781.15570.24080.036*
C130.4542 (3)1.0757 (2)0.2322 (3)0.0279 (9)
H130.51241.10700.22870.034*
C140.4670 (3)1.0014 (2)0.2297 (3)0.0280 (9)
H140.53410.98140.22420.034*
C150.3825 (3)0.9555 (2)0.2350 (3)0.0241 (9)
H150.39160.90430.23230.029*
C160.2187 (3)0.89959 (19)0.3980 (3)0.0218 (8)
C170.2997 (3)0.9362 (2)0.4538 (3)0.0275 (9)
H170.33280.97560.42470.033*
C180.3329 (3)0.9164 (2)0.5511 (3)0.0349 (10)
H180.38900.94180.58770.042*
C190.2853 (3)0.8606 (2)0.5942 (3)0.0329 (10)
H190.31020.84600.66010.040*
C200.2015 (3)0.8251 (2)0.5433 (3)0.0322 (10)
H200.16610.78780.57470.039*
C210.1693 (3)0.8448 (2)0.4452 (3)0.0273 (9)
H210.11200.82000.40960.033*
C220.0647 (3)0.97588 (18)0.2688 (3)0.0206 (8)
C230.0053 (3)0.9746 (2)0.3480 (3)0.0301 (10)
H230.02970.94850.40680.036*
C24−0.0893 (3)1.0110 (2)0.3421 (3)0.0380 (11)
H24−0.12901.01000.39710.046*
C25−0.1262 (3)1.0486 (2)0.2574 (3)0.0341 (10)
H25−0.19211.07220.25300.041*
C26−0.0671 (3)1.0517 (2)0.1791 (3)0.0279 (9)
H26−0.09131.07870.12120.034*
C270.0272 (3)1.01580 (19)0.1842 (3)0.0228 (9)
H270.06731.01820.12950.027*
C28−0.0643 (3)0.83083 (19)0.1494 (3)0.0212 (8)
C29−0.1777 (3)0.83849 (19)0.1434 (3)0.0256 (9)
C30−0.2313 (3)0.8185 (2)0.2228 (3)0.0341 (10)
H30−0.19400.80010.28220.041*
C31−0.3392 (3)0.8253 (3)0.2156 (3)0.0454 (12)
H31−0.37550.81080.26970.055*
C32−0.3936 (3)0.8529 (2)0.1303 (4)0.0457 (12)
H32−0.46730.85750.12580.055*
C33−0.3420 (3)0.8735 (2)0.0523 (4)0.0452 (12)
H33−0.38010.8927−0.00630.054*
C34−0.2346 (3)0.8668 (2)0.0578 (3)0.0334 (10)
H34−0.19930.88150.00320.040*
N10.2933 (2)0.76531 (15)0.2267 (2)0.0215 (7)
N20.3582 (2)0.73352 (16)0.1657 (2)0.0235 (7)
N30.2606 (2)0.86080 (16)0.0565 (2)0.0210 (7)
N40.3261 (2)0.81318 (16)0.0171 (2)0.0241 (7)
N50.1408 (2)0.72945 (15)0.0615 (2)0.0223 (7)
N60.2250 (2)0.69857 (16)0.0266 (2)0.0251 (7)
P10.18113 (7)0.91954 (5)0.26504 (7)0.0190 (2)
Ru10.16002 (2)0.822395 (15)0.15631 (2)0.01805 (9)
S10.01327 (7)0.78411 (5)0.23709 (7)0.0227 (2)
S20.00968 (7)0.87056 (5)0.06980 (7)0.0231 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
B10.025 (3)0.031 (3)0.028 (3)0.005 (2)0.006 (2)−0.001 (2)
C10.038 (3)0.022 (2)0.020 (2)0.0017 (18)−0.0020 (18)0.0005 (17)
C20.036 (3)0.033 (2)0.028 (2)0.0073 (19)−0.0084 (19)0.0016 (19)
C30.021 (2)0.026 (2)0.037 (3)0.0045 (17)0.0015 (18)0.0056 (19)
C40.033 (2)0.026 (2)0.024 (2)−0.0042 (18)0.0010 (18)0.0035 (18)
C50.034 (3)0.036 (3)0.032 (2)−0.0045 (19)0.0105 (19)0.009 (2)
C60.025 (2)0.047 (3)0.023 (2)−0.0026 (19)0.0100 (17)0.0058 (19)
C70.028 (2)0.025 (2)0.024 (2)−0.0035 (18)0.0006 (17)0.0000 (17)
C80.037 (3)0.029 (2)0.033 (3)−0.0087 (19)−0.0037 (19)−0.004 (2)
C90.048 (3)0.022 (2)0.029 (2)0.0042 (19)0.004 (2)−0.0041 (19)
C100.017 (2)0.023 (2)0.018 (2)−0.0013 (16)0.0032 (15)0.0009 (16)
C110.020 (2)0.025 (2)0.028 (2)0.0013 (16)0.0048 (17)0.0001 (18)
C120.035 (3)0.019 (2)0.036 (2)−0.0033 (18)0.0028 (19)−0.0010 (18)
C130.027 (2)0.030 (2)0.027 (2)−0.0109 (18)0.0061 (17)−0.0006 (18)
C140.021 (2)0.032 (2)0.032 (2)0.0007 (17)0.0050 (17)−0.0034 (19)
C150.027 (2)0.020 (2)0.025 (2)−0.0008 (17)0.0032 (17)−0.0006 (17)
C160.024 (2)0.024 (2)0.018 (2)0.0070 (16)0.0031 (16)−0.0004 (16)
C170.025 (2)0.031 (2)0.026 (2)0.0006 (17)0.0016 (17)0.0015 (19)
C180.029 (2)0.046 (3)0.028 (2)0.004 (2)−0.0019 (18)−0.005 (2)
C190.035 (3)0.043 (3)0.020 (2)0.015 (2)0.0022 (19)0.004 (2)
C200.041 (3)0.032 (2)0.024 (2)0.007 (2)0.0088 (19)0.005 (2)
C210.031 (2)0.028 (2)0.022 (2)−0.0023 (17)0.0015 (17)0.0000 (17)
C220.020 (2)0.0188 (19)0.023 (2)−0.0035 (16)0.0047 (16)−0.0039 (17)
C230.027 (2)0.035 (2)0.029 (2)0.0039 (19)0.0049 (18)0.0014 (19)
C240.035 (3)0.046 (3)0.035 (3)0.009 (2)0.016 (2)0.001 (2)
C250.021 (2)0.040 (3)0.042 (3)0.0084 (18)0.004 (2)−0.006 (2)
C260.027 (2)0.026 (2)0.030 (2)0.0022 (17)−0.0036 (18)−0.0047 (18)
C270.023 (2)0.024 (2)0.023 (2)−0.0002 (16)0.0053 (16)−0.0001 (17)
C280.021 (2)0.023 (2)0.020 (2)−0.0022 (16)0.0010 (15)−0.0024 (17)
C290.019 (2)0.023 (2)0.034 (2)−0.0022 (16)0.0034 (18)−0.0101 (18)
C300.025 (2)0.050 (3)0.028 (2)−0.003 (2)0.0047 (18)−0.013 (2)
C310.030 (3)0.068 (3)0.041 (3)−0.004 (2)0.015 (2)−0.025 (3)
C320.022 (3)0.053 (3)0.062 (3)0.004 (2)0.002 (2)−0.023 (3)
C330.031 (3)0.043 (3)0.059 (3)0.004 (2)−0.007 (2)−0.004 (2)
C340.025 (3)0.032 (2)0.043 (3)0.0008 (18)0.0023 (19)0.005 (2)
N10.0232 (18)0.0173 (16)0.0244 (18)−0.0015 (13)0.0042 (14)0.0000 (14)
N20.0193 (18)0.0260 (17)0.0255 (18)0.0024 (14)0.0047 (14)0.0024 (15)
N30.0207 (18)0.0228 (17)0.0195 (17)−0.0011 (13)0.0020 (13)0.0022 (14)
N40.0198 (17)0.0311 (19)0.0218 (17)0.0011 (14)0.0043 (13)0.0026 (15)
N50.0238 (19)0.0212 (17)0.0221 (17)0.0006 (14)0.0032 (14)−0.0026 (14)
N60.0270 (19)0.0232 (18)0.0257 (19)0.0004 (14)0.0067 (14)−0.0014 (14)
P10.0186 (5)0.0182 (5)0.0203 (5)−0.0001 (4)0.0030 (4)0.0008 (4)
Ru10.01702 (17)0.01847 (15)0.01893 (17)−0.00125 (13)0.00328 (11)0.00074 (14)
S10.0213 (5)0.0233 (5)0.0239 (5)−0.0014 (4)0.0042 (4)0.0021 (4)
S20.0216 (6)0.0252 (5)0.0225 (5)−0.0010 (4)0.0016 (4)0.0013 (4)

Geometric parameters (Å, °)

B1—N21.533 (5)C18—C191.361 (5)
B1—N41.535 (5)C18—H180.9500
B1—N61.538 (5)C19—C201.378 (5)
B1—H1'1.0000C19—H190.9500
C1—N11.335 (4)C20—C211.391 (5)
C1—C21.376 (5)C20—H200.9500
C1—H10.9500C21—H210.9500
C2—C31.363 (5)C22—C231.386 (5)
C2—H20.9500C22—C271.398 (5)
C3—N21.342 (4)C22—P11.829 (4)
C3—H30.9500C23—C241.386 (5)
C4—N31.325 (4)C23—H230.9500
C4—C51.382 (5)C24—C251.375 (5)
C4—H40.9500C24—H240.9500
C5—C61.368 (5)C25—C261.375 (5)
C5—H50.9500C25—H250.9500
C6—N41.347 (4)C26—C271.378 (5)
C6—H60.9500C26—H260.9500
C7—N51.334 (4)C27—H270.9500
C7—C81.386 (5)C28—C291.461 (5)
C7—H70.9500C28—S21.684 (4)
C8—C91.355 (5)C28—S11.694 (4)
C8—H80.9500C29—C301.392 (5)
C9—N61.347 (5)C29—C341.397 (5)
C9—H90.9500C30—C311.388 (5)
C10—C111.384 (5)C30—H300.9500
C10—C151.389 (5)C31—C321.376 (6)
C10—P11.834 (3)C31—H310.9500
C11—C121.383 (5)C32—C331.364 (6)
C11—H110.9500C32—H320.9500
C12—C131.376 (5)C33—C341.384 (5)
C12—H120.9500C33—H330.9500
C13—C141.379 (5)C34—H340.9500
C13—H130.9500N1—N21.372 (4)
C14—C151.386 (5)N1—Ru12.141 (3)
C14—H140.9500N3—N41.366 (4)
C15—H150.9500N3—Ru12.098 (3)
C16—C211.387 (5)N5—N61.357 (4)
C16—C171.389 (5)N5—Ru12.134 (3)
C16—P11.844 (4)P1—Ru12.3100 (10)
C17—C181.384 (5)Ru1—S22.3213 (10)
C17—H170.9500Ru1—S12.3962 (10)
N2—B1—N4108.0 (3)C25—C24—C23120.6 (4)
N2—B1—N6107.8 (3)C25—C24—H24119.7
N4—B1—N6108.2 (3)C23—C24—H24119.7
N2—B1—H1'110.9C26—C25—C24119.5 (4)
N4—B1—H1'110.9C26—C25—H25120.3
N6—B1—H1'110.9C24—C25—H25120.3
N1—C1—C2111.5 (3)C25—C26—C27120.4 (4)
N1—C1—H1124.2C25—C26—H26119.8
C2—C1—H1124.2C27—C26—H26119.8
C3—C2—C1104.9 (3)C26—C27—C22120.8 (3)
C3—C2—H2127.5C26—C27—H27119.6
C1—C2—H2127.5C22—C27—H27119.6
N2—C3—C2108.7 (3)C29—C28—S2124.0 (3)
N2—C3—H3125.7C29—C28—S1126.4 (3)
C2—C3—H3125.7S2—C28—S1109.6 (2)
N3—C4—C5110.9 (4)C30—C29—C34118.5 (4)
N3—C4—H4124.5C30—C29—C28121.0 (4)
C5—C4—H4124.5C34—C29—C28120.6 (3)
C6—C5—C4105.1 (3)C31—C30—C29120.3 (4)
C6—C5—H5127.5C31—C30—H30119.8
C4—C5—H5127.5C29—C30—H30119.8
N4—C6—C5108.4 (4)C32—C31—C30120.1 (4)
N4—C6—H6125.8C32—C31—H31119.9
C5—C6—H6125.8C30—C31—H31119.9
N5—C7—C8110.2 (3)C33—C32—C31120.3 (4)
N5—C7—H7124.9C33—C32—H32119.9
C8—C7—H7124.9C31—C32—H32119.9
C9—C8—C7105.3 (3)C32—C33—C34120.4 (4)
C9—C8—H8127.4C32—C33—H33119.8
C7—C8—H8127.4C34—C33—H33119.8
N6—C9—C8108.9 (4)C33—C34—C29120.4 (4)
N6—C9—H9125.6C33—C34—H34119.8
C8—C9—H9125.6C29—C34—H34119.8
C11—C10—C15119.1 (3)C1—N1—N2105.1 (3)
C11—C10—P1123.9 (3)C1—N1—Ru1137.7 (2)
C15—C10—P1116.7 (3)N2—N1—Ru1117.1 (2)
C12—C11—C10120.5 (3)C3—N2—N1109.7 (3)
C12—C11—H11119.7C3—N2—B1128.4 (3)
C10—C11—H11119.7N1—N2—B1121.8 (3)
C13—C12—C11120.2 (4)C4—N3—N4106.3 (3)
C13—C12—H12119.9C4—N3—Ru1134.1 (3)
C11—C12—H12119.9N4—N3—Ru1119.3 (2)
C12—C13—C14119.7 (3)C6—N4—N3109.3 (3)
C12—C13—H13120.1C6—N4—B1130.3 (3)
C14—C13—H13120.1N3—N4—B1120.4 (3)
C13—C14—C15120.4 (4)C7—N5—N6106.5 (3)
C13—C14—H14119.8C7—N5—Ru1133.3 (3)
C15—C14—H14119.8N6—N5—Ru1120.1 (2)
C14—C15—C10120.0 (3)C9—N6—N5109.2 (3)
C14—C15—H15120.0C9—N6—B1131.7 (3)
C10—C15—H15120.0N5—N6—B1119.1 (3)
C21—C16—C17117.3 (3)C22—P1—C10104.42 (16)
C21—C16—P1120.7 (3)C22—P1—C16102.15 (16)
C17—C16—P1122.0 (3)C10—P1—C1699.36 (16)
C18—C17—C16121.4 (4)C22—P1—Ru1114.77 (11)
C18—C17—H17119.3C10—P1—Ru1116.19 (12)
C16—C17—H17119.3C16—P1—Ru1117.70 (12)
C19—C18—C17120.0 (4)N3—Ru1—N585.49 (11)
C19—C18—H18120.0N3—Ru1—N185.83 (11)
C17—C18—H18120.0N5—Ru1—N184.61 (11)
C18—C19—C20120.7 (4)N3—Ru1—P196.44 (8)
C18—C19—H19119.7N5—Ru1—P1177.43 (8)
C20—C19—H19119.7N1—Ru1—P193.82 (8)
C19—C20—C21118.9 (4)N3—Ru1—S295.15 (8)
C19—C20—H20120.5N5—Ru1—S288.31 (8)
C21—C20—H20120.5N1—Ru1—S2172.76 (8)
C16—C21—C20121.7 (4)P1—Ru1—S293.20 (3)
C16—C21—H21119.2N3—Ru1—S1166.07 (8)
C20—C21—H21119.2N5—Ru1—S189.71 (8)
C23—C22—C27118.1 (3)N1—Ru1—S1106.76 (8)
C23—C22—P1122.6 (3)P1—Ru1—S188.79 (3)
C27—C22—P1118.8 (3)S2—Ru1—S171.61 (3)
C22—C23—C24120.5 (4)C28—S1—Ru188.02 (12)
C22—C23—H23119.7C28—S2—Ru190.79 (12)
C24—C23—H23119.7

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2121).

References

  • Alock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem.31, 2906–2908.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Burrows, A. D. (2001). CrystEngComm, 46, 1–5.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 16, 3998–4004.
  • Hidai, M., Kuwata, S. & &Mizobe, Y. (2000). Acc. Chem. Res.33, 46–52. [PubMed]
  • Meno, M., Pramanik, A., Bag, N. & Chakravorty, A. (1995). J. Chem. Soc. Dalton Trans. pp. 1543–1547.
  • Nonius (1999). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Pavlik, S., Mereiter, K., Puchberger, M. & Kirchner, K. (2005). Organo­metallics, 24, 3561–3575.
  • Sellmann, D., Utz, J. & Heineman, F. W. (1999). Eur J Inorg Chem 2, 341–346.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827–831.
  • Vit, Z. & Zdrazil, M. (1989). J. Catal.119, 1–9.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography