PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1533.
Published online 2008 November 13. doi:  10.1107/S1600536808036581
PMCID: PMC2960109

catena-Poly[[[diiodidomercury(II)]-μ-N,N′-di-3-pyridylpyridine-2,6-dicarboxamide] dimethyl­formamide solvate]

Abstract

In the title complex, {[HgI2(C17H13N5O2)]·C3H7NO}n, the Hg atom is coordinated by two I atoms and two N atoms from two different ligands in a distorted tetra­hedral environment. Hg atoms are bridged by N,N′-di-3-pyridylpyridine-2,6-dicarboxamide ligands, forming a helical chain running along the a axis.

Related literature

For binuclear complexes of N,N′-bis­(pyridin-3-yl)-2,6-pyridine­dicarboxamide, see: Baer et al. (2002 [triangle]); Huang & Wu (2008 [triangle]); Qin et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1533-scheme1.jpg

Experimental

Crystal data

  • [HgI2(C17H13N5O2)]·C3H7NO
  • M r = 846.81
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1533-efi1.jpg
  • a = 21.295 (4) Å
  • b = 9.7177 (19) Å
  • c = 24.440 (5) Å
  • V = 5057.5 (17) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 8.56 mm−1
  • T = 293 (2) K
  • 0.20 × 0.18 × 0.08 mm

Data collection

  • Rigaku Saturn724 diffractometer
  • Absorption correction: numerical (CrystalClear; Rigaku/MSC, 2006 [triangle]) T min = 0.279, T max = 0.547
  • 48014 measured reflections
  • 4447 independent reflections
  • 4250 reflections with I > 2σ(I)
  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.119
  • S = 1.31
  • 4447 reflections
  • 291 parameters
  • H-atom parameters constrained
  • Δρmax = 1.21 e Å−3
  • Δρmin = −0.92 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036581/hg2428sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036581/hg2428Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Hou Hong-Wei of Zhengzhou University for his help.

supplementary crystallographic information

Comment

The expansion of the field of metal-organic frameworks (MOFs) of predetermined structure depends on the judicious choice of new linkers and nodes of appropriate coordination algorithms. Rigid, polydentate N-donor ligands are typical linkers employed in such work. The rigid conjugated clamp-like multi-pyridine ligand N,N'-bis(pyridin-3-yl)-2,6-pyridinedicarboxamide, is a convenient bridging ligand for the synthesis of chain complexes. However, the previous work proved that the ligand also can form binuclear complex with 28-number ring (Huang et al.; 2004, Qin et al. 2003; Baer et al. 2002). We think, among the factors that induce the self-assembly processes with this ligand, the rotation of terminal pyridine groups plays a crucial role in deciding between binuclear versus. extended structures of the metal complexes. In this work, we selected this ligand as linker, generating a new helical chain coordination complex, {[HgI2(C17N5O2)](DMF)}n, (I), which is reported here. In compound (I) each Hg(II) atom is four-coordinated by two N atoms from two ligands and two I atoms in a distorted tetrahedral coordination sphere (Fig. 1). The Hg(II) atoms are bridged with N,N'-bis(pyridin-3-yl)-2,6-pyridinedicarboxamide ligands to form a helical chain running the a axis (Fig. 2).

In the crystal structure, the intermolecular N—H···N hydrogen bonds and the N—H···O hydrogen bonds arising from the DMF and ligand complete the structure.

Experimental

The ligand N,N'-bis(pyridin-3-yl)-2,6-pyridinedicarboxamide (0.05 mmol, 0.016 g) in DMF (5 ml) was added dropwise to a solution of HgI2 (0.1 mmol, 0.036 g) in methanol (3 ml). The precipitate was filtered and the resulting solution was allowed to stand at room temperature in the dark. After one week good quality colorless crystals were obtained from the filtrate and dried in air.

Figures

Fig. 1.
View of the title complex, showing the labeling of the non-H atoms and 30% probability ellipsolids.
Fig. 2.
A view of the crystal packing along the c axis.

Crystal data

[HgI2(C17H13N5O2)]·C3H7NOF000 = 3136
Mr = 846.81Dx = 2.224 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8721 reflections
a = 21.295 (4) Åθ = 3.2–26.0º
b = 9.7177 (19) ŵ = 8.56 mm1
c = 24.440 (5) ÅT = 293 (2) K
V = 5057.5 (17) Å3Prism, colorless
Z = 80.20 × 0.18 × 0.08 mm

Data collection

Saturn724 diffractometer4447 independent reflections
Radiation source: fine-focus sealed tube4250 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.073
Detector resolution: 28.5714 pixels mm-1θmax = 25.0º
T = 291(2) Kθmin = 3.3º
dtprofit.ref scansh = −25→25
Absorption correction: Numerical(CrystalClear; Rigaku/MSC, 2006)k = −11→11
Tmin = 0.279, Tmax = 0.548l = −29→29
48014 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.119  w = 1/[σ2(Fo2) + (0.0319P)2 + 27.0127P] where P = (Fo2 + 2Fc2)/3
S = 1.31(Δ/σ)max = 0.001
4447 reflectionsΔρmax = 1.21 e Å3
291 parametersΔρmin = −0.92 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Hg10.374277 (19)0.12855 (4)0.670365 (18)0.05404 (16)
I10.34375 (4)−0.02626 (8)0.58368 (3)0.0644 (2)
I20.44953 (4)0.13315 (9)0.75677 (3)0.0709 (3)
O10.8018 (3)0.4961 (8)0.6739 (3)0.069 (2)
O20.5375 (3)0.7089 (8)0.5249 (3)0.065 (2)
O30.5923 (3)0.2832 (8)0.6383 (3)0.063 (2)
N10.7739 (4)0.2015 (9)0.7954 (4)0.053 (2)
N20.7026 (3)0.4172 (9)0.6896 (3)0.050 (2)
H20.66490.42230.67720.060*
N30.6581 (3)0.5688 (8)0.6070 (3)0.0432 (18)
N40.5345 (3)0.5356 (8)0.5879 (3)0.0450 (19)
H40.55810.48740.60910.054*
N50.3933 (4)0.3479 (7)0.6244 (4)0.047 (2)
N60.5553 (4)0.0721 (9)0.6163 (4)0.053 (2)
C10.7230 (5)0.1535 (11)0.8191 (5)0.059 (3)
H10.72740.09230.84810.070*
C20.6634 (5)0.1903 (12)0.8027 (4)0.056 (3)
H2A0.62810.15510.82020.067*
C30.6576 (4)0.2814 (10)0.7594 (4)0.048 (2)
H50.61810.30910.74730.057*
C40.7112 (4)0.3301 (10)0.7344 (4)0.044 (2)
C50.7690 (4)0.2899 (10)0.7538 (4)0.049 (2)
H30.80530.32470.73770.059*
C60.7461 (5)0.4951 (11)0.6630 (4)0.051 (3)
C70.7196 (4)0.5800 (10)0.6170 (4)0.048 (2)
C80.7579 (5)0.6690 (12)0.5882 (5)0.061 (3)
H80.80050.67560.59620.073*
C90.7315 (5)0.7476 (13)0.5473 (5)0.067 (3)
H90.75640.80690.52680.081*
C100.6680 (5)0.7383 (11)0.5367 (4)0.057 (3)
H100.64930.79220.50990.068*
C110.6331 (4)0.6463 (10)0.5674 (4)0.044 (2)
C120.5642 (5)0.6341 (10)0.5573 (4)0.048 (2)
C130.4705 (4)0.5039 (9)0.5891 (4)0.042 (2)
C140.4245 (5)0.5696 (11)0.5587 (5)0.054 (3)
H140.43450.64450.53670.065*
C150.3633 (5)0.5216 (12)0.5618 (5)0.063 (3)
H150.33140.56480.54220.075*
C160.3505 (5)0.4110 (12)0.5937 (5)0.059 (3)
H160.30960.37740.59420.071*
C170.4519 (5)0.3943 (10)0.6222 (4)0.050 (3)
H170.48200.35160.64390.061*
C180.5424 (7)0.1046 (15)0.5597 (5)0.091 (4)
H18A0.49900.08630.55190.136*
H18B0.56830.04890.53650.136*
H18C0.55110.20010.55320.136*
C190.5445 (6)−0.0682 (12)0.6371 (6)0.081 (4)
H19A0.5770−0.12810.62390.121*
H19B0.5045−0.10080.62450.121*
H19C0.5450−0.06720.67630.121*
C200.5801 (4)0.1635 (10)0.6498 (4)0.047 (2)
H200.58910.13450.68520.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hg10.0468 (3)0.0576 (3)0.0577 (3)−0.00017 (19)0.00731 (19)−0.0057 (2)
I10.0753 (5)0.0618 (5)0.0562 (5)−0.0038 (4)0.0088 (4)−0.0071 (4)
I20.0654 (5)0.0874 (6)0.0599 (5)−0.0060 (4)−0.0026 (4)−0.0047 (4)
O10.039 (4)0.085 (6)0.083 (6)−0.017 (4)−0.016 (4)0.029 (4)
O20.068 (5)0.063 (5)0.066 (5)−0.002 (4)−0.015 (4)0.024 (4)
O30.047 (4)0.058 (5)0.084 (6)−0.006 (4)−0.013 (4)0.012 (4)
N10.045 (5)0.055 (5)0.058 (6)−0.002 (4)−0.011 (4)0.010 (4)
N20.033 (4)0.057 (5)0.060 (5)−0.003 (4)−0.007 (4)0.017 (4)
N30.040 (4)0.044 (4)0.046 (5)−0.005 (4)0.000 (4)0.003 (4)
N40.044 (4)0.051 (5)0.040 (5)0.000 (4)−0.007 (4)0.013 (4)
N50.038 (4)0.037 (4)0.066 (6)0.000 (3)−0.007 (4)0.003 (4)
N60.049 (5)0.055 (5)0.054 (6)0.008 (4)−0.005 (4)−0.003 (4)
C10.044 (6)0.062 (7)0.070 (8)−0.005 (5)−0.001 (5)0.017 (6)
C20.045 (6)0.076 (7)0.046 (6)−0.010 (5)0.013 (5)0.010 (6)
C30.029 (5)0.055 (6)0.060 (7)−0.003 (4)−0.003 (4)0.004 (5)
C40.042 (5)0.044 (5)0.045 (6)0.001 (4)−0.005 (4)−0.002 (4)
C50.036 (5)0.054 (6)0.058 (6)0.000 (5)−0.007 (5)0.006 (5)
C60.042 (6)0.059 (6)0.051 (6)−0.007 (5)0.001 (5)0.011 (5)
C70.035 (5)0.055 (6)0.055 (6)−0.013 (5)0.003 (4)0.003 (5)
C80.044 (6)0.076 (7)0.062 (7)−0.020 (5)−0.002 (5)0.014 (6)
C90.062 (7)0.079 (8)0.061 (7)−0.022 (6)0.006 (6)0.022 (6)
C100.069 (7)0.053 (6)0.048 (6)−0.013 (5)−0.009 (5)0.013 (5)
C110.053 (6)0.049 (6)0.030 (5)−0.005 (5)0.000 (4)0.008 (4)
C120.059 (6)0.048 (6)0.037 (6)0.003 (5)−0.005 (5)0.005 (5)
C130.035 (5)0.047 (5)0.043 (5)0.008 (4)−0.008 (4)−0.004 (4)
C140.047 (6)0.049 (6)0.067 (7)0.007 (5)−0.003 (5)0.006 (5)
C150.060 (7)0.065 (7)0.063 (8)0.009 (6)−0.020 (6)0.008 (6)
C160.039 (5)0.065 (7)0.073 (8)0.004 (5)−0.007 (5)−0.003 (6)
C170.045 (6)0.047 (6)0.060 (7)0.005 (5)−0.007 (5)0.009 (5)
C180.110 (11)0.111 (12)0.052 (8)0.000 (9)−0.008 (7)−0.003 (8)
C190.081 (9)0.050 (7)0.111 (11)0.002 (6)0.006 (8)−0.011 (7)
C200.039 (5)0.046 (6)0.057 (6)0.009 (5)−0.005 (5)0.003 (5)

Geometric parameters (Å, °)

Hg1—N1i2.403 (8)C3—H50.9300
Hg1—N52.444 (8)C4—C51.377 (12)
Hg1—I22.6514 (10)C5—H30.9300
Hg1—I12.6785 (10)C6—C71.504 (14)
O1—C61.215 (12)C7—C81.381 (14)
O2—C121.217 (11)C8—C91.380 (15)
O3—C201.225 (11)C8—H80.9300
N1—C11.314 (13)C9—C101.378 (14)
N1—C51.335 (12)C9—H90.9300
N1—Hg1ii2.403 (8)C10—C111.384 (13)
N2—C61.362 (12)C10—H100.9300
N2—C41.395 (12)C11—C121.492 (13)
N2—H20.8600C13—C141.387 (13)
N3—C71.336 (11)C13—C171.395 (13)
N3—C111.337 (11)C14—C151.387 (14)
N4—C121.370 (12)C14—H140.9300
N4—C131.396 (11)C15—C161.356 (16)
N4—H40.8600C15—H150.9300
N5—C171.327 (12)C16—H160.9300
N5—C161.330 (13)C17—H170.9300
N6—C201.318 (13)C18—H18A0.9600
N6—C181.445 (15)C18—H18B0.9600
N6—C191.473 (14)C18—H18C0.9600
C1—C21.379 (14)C19—H19A0.9600
C1—H10.9300C19—H19B0.9600
C2—C31.386 (14)C19—H19C0.9600
C2—H2A0.9300C20—H200.9300
C3—C41.378 (13)
N1i—Hg1—N592.9 (3)C9—C8—H8120.8
N1i—Hg1—I2104.8 (2)C7—C8—H8120.8
N5—Hg1—I2104.57 (19)C10—C9—C8119.9 (10)
N1i—Hg1—I1103.0 (2)C10—C9—H9120.0
N5—Hg1—I199.6 (2)C8—C9—H9120.0
I2—Hg1—I1141.83 (3)C9—C10—C11117.9 (10)
C1—N1—C5120.1 (9)C9—C10—H10121.0
C1—N1—Hg1ii118.3 (7)C11—C10—H10121.0
C5—N1—Hg1ii121.6 (6)N3—C11—C10122.8 (9)
C6—N2—C4128.5 (8)N3—C11—C12117.9 (8)
C6—N2—H2115.7C10—C11—C12119.3 (9)
C4—N2—H2115.7O2—C12—N4123.9 (9)
C7—N3—C11118.5 (8)O2—C12—C11121.3 (9)
C12—N4—C13128.1 (8)N4—C12—C11114.8 (8)
C12—N4—H4116.0C14—C13—C17117.5 (9)
C13—N4—H4116.0C14—C13—N4125.2 (9)
C17—N5—C16117.8 (9)C17—C13—N4117.3 (8)
C17—N5—Hg1118.0 (6)C13—C14—C15118.7 (10)
C16—N5—Hg1123.2 (7)C13—C14—H14120.6
C20—N6—C18121.6 (10)C15—C14—H14120.6
C20—N6—C19118.2 (10)C16—C15—C14119.2 (10)
C18—N6—C19120.1 (10)C16—C15—H15120.4
N1—C1—C2122.6 (10)C14—C15—H15120.4
N1—C1—H1118.7N5—C16—C15123.5 (10)
C2—C1—H1118.7N5—C16—H16118.3
C1—C2—C3118.1 (9)C15—C16—H16118.3
C1—C2—H2A121.0N5—C17—C13123.3 (9)
C3—C2—H2A121.0N5—C17—H17118.3
C4—C3—C2119.0 (9)C13—C17—H17118.3
C4—C3—H5120.5N6—C18—H18A109.5
C2—C3—H5120.5N6—C18—H18B109.5
C5—C4—C3119.4 (9)H18A—C18—H18B109.5
C5—C4—N2124.0 (9)N6—C18—H18C109.5
C3—C4—N2116.6 (8)H18A—C18—H18C109.5
N1—C5—C4120.9 (9)H18B—C18—H18C109.5
N1—C5—H3119.5N6—C19—H19A109.5
C4—C5—H3119.5N6—C19—H19B109.5
O1—C6—N2124.3 (9)H19A—C19—H19B109.5
O1—C6—C7121.7 (9)N6—C19—H19C109.5
N2—C6—C7114.0 (8)H19A—C19—H19C109.5
N3—C7—C8122.4 (10)H19B—C19—H19C109.5
N3—C7—C6117.4 (8)O3—C20—N6125.7 (10)
C8—C7—C6120.2 (9)O3—C20—H20117.2
C9—C8—C7118.4 (10)N6—C20—H20117.2
N1i—Hg1—N5—C17145.4 (8)C6—C7—C8—C9−178.4 (11)
I2—Hg1—N5—C1739.3 (8)C7—C8—C9—C101.3 (19)
I1—Hg1—N5—C17−110.8 (7)C8—C9—C10—C11−1.5 (18)
N1i—Hg1—N5—C16−46.3 (9)C7—N3—C11—C10−0.6 (15)
I2—Hg1—N5—C16−152.4 (8)C7—N3—C11—C12−179.1 (9)
I1—Hg1—N5—C1657.4 (8)C9—C10—C11—N31.2 (16)
C5—N1—C1—C20.2 (17)C9—C10—C11—C12179.7 (10)
Hg1ii—N1—C1—C2179.4 (9)C13—N4—C12—O2−1.3 (17)
N1—C1—C2—C30.2 (17)C13—N4—C12—C11177.4 (9)
C1—C2—C3—C40.5 (16)N3—C11—C12—O2174.3 (10)
C2—C3—C4—C5−1.5 (15)C10—C11—C12—O2−4.3 (15)
C2—C3—C4—N2177.5 (9)N3—C11—C12—N4−4.4 (13)
C6—N2—C4—C5−11.9 (17)C10—C11—C12—N4177.0 (9)
C6—N2—C4—C3169.2 (10)C12—N4—C13—C14−0.5 (16)
C1—N1—C5—C4−1.2 (15)C12—N4—C13—C17177.3 (10)
Hg1ii—N1—C5—C4179.6 (7)C17—C13—C14—C15−1.4 (15)
C3—C4—C5—N11.9 (15)N4—C13—C14—C15176.4 (10)
N2—C4—C5—N1−177.1 (9)C13—C14—C15—C16−1.0 (17)
C4—N2—C6—O12.9 (18)C17—N5—C16—C15−1.8 (17)
C4—N2—C6—C7−178.4 (9)Hg1—N5—C16—C15−170.1 (9)
C11—N3—C7—C80.3 (15)C14—C15—C16—N52.7 (19)
C11—N3—C7—C6178.0 (9)C16—N5—C17—C13−0.9 (15)
O1—C6—C7—N3177.9 (10)Hg1—N5—C17—C13168.1 (8)
N2—C6—C7—N3−0.9 (14)C14—C13—C17—N52.4 (15)
O1—C6—C7—C8−4.3 (17)N4—C13—C17—N5−175.6 (9)
N2—C6—C7—C8176.9 (10)C18—N6—C20—O33.1 (16)
N3—C7—C8—C9−0.7 (18)C19—N6—C20—O3179.3 (10)

Symmetry codes: (i) x−1/2, y, −z+3/2; (ii) x+1/2, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4···O30.862.233.008 (10)150
N2—H2···O30.862.262.964 (10)139

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2428).

References

  • Baer, A. J., Koivisto, B. D., Taylor, N. J., Hanan, G. S., Nierengarten, H. & Dorsselaer, A. V. (2002). Inorg. Chem.41, 4987–4989. [PubMed]
  • Huang, L. & Wu, J. (2008). Acta Cryst. E64, m1263. [PMC free article] [PubMed]
  • Qin, Z.-Q., Jennings, M. C. & Puddephatt, R. J. (2003). Inorg. Chem.42, 1956–1965. [PubMed]
  • Rigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography