PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2462.
Published online 2008 November 26. doi:  10.1107/S1600536808039172
PMCID: PMC2960106

(Z)-Ethyl 2-(3-nitro­benzyl­idene)-3-oxo­butanoate

Abstract

The title mol­ecule, C13H13NO5, adopts a Z conformation at the C= C double bond. The eth­oxy atoms of the ethyl ester group are disordered over two orientations in a 3:2 ratio. Weak inter­molecular C—H(...)O hydrogen bonds help to establish the packing.

Related literature

For applications of β-keto ester derivatives, see: Benetti et al. (1995 [triangle]); Simon et al. (2004 [triangle]). For the preparation of the title compound, see Correa & Scott (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2462-scheme1.jpg

Experimental

Crystal data

  • C13H13NO5
  • M r = 263.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2462-efi1.jpg
  • a = 27.6055 (6) Å
  • b = 11.8164 (2) Å
  • c = 8.2934 (1) Å
  • β = 102.829 (2)°
  • V = 2637.75 (8) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 (2) K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.980, T max = 0.990
  • 13516 measured reflections
  • 2593 independent reflections
  • 1793 reflections with I > 2σ(I)
  • R int = 0.138

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.158
  • S = 0.97
  • 2593 reflections
  • 194 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808039172/cv2486sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039172/cv2486Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to Hua Cheng for helpful discussions.

supplementary crystallographic information

Comment

β-Keto ester derivatives, as important synthetic intermediates, are widely applied in the synthesis of new heterocyclic derivatives presenting new pharmacological properties (Benetti et al., 1995; Simon et al., 2004).

The molecular structure of the title compound is shown in Fig. 1. It adopts a Z-conformation at the carbon-carbon double bond. The EtO atoms of the ethyl ester group are disordered over two orientations with a ratio 3:2. The molecules are connected mainly by intermolecular C—H···O interactions (Table 1).

Experimental

The title compound was synthesized as previously described by Correa & Scott (2001) via Knoevenagel reaction. Colourless crystals suitable for X-ray data collection were obtained by slow evaporation of a 2:5 ratio CH2Cl2:cyclohexane solution at room temperture.

Refinement

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, allowing for free rotation of the methyl groups. The constraint Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) (methyl C) was applied.

Figures

Fig. 1.
View of the title molecule showing the atom-labelling scheme. The displacement ellipsoids are drawn at the 30% probability level. Only major parts of disordered atoms are shown.

Crystal data

C13H13NO5F000 = 1104
Mr = 263.24Dx = 1.326 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4029 reflections
a = 27.6055 (6) Åθ = 2.9–22.6º
b = 11.8164 (2) ŵ = 0.10 mm1
c = 8.29340 (10) ÅT = 298 (2) K
β = 102.829 (2)ºBlock, colourless
V = 2637.75 (8) Å30.20 × 0.10 × 0.10 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer2593 independent reflections
Radiation source: fine-focus sealed tube1793 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.138
T = 298(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1997)h = −34→30
Tmin = 0.980, Tmax = 0.990k = −14→14
13516 measured reflectionsl = −10→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.158  w = 1/[σ2(Fo2) + (0.0987P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
2593 reflectionsΔρmax = 0.20 e Å3
194 parametersΔρmin = −0.26 e Å3
6 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.15219 (6)0.41046 (14)−0.0533 (2)0.0538 (4)
C20.11986 (7)0.33560 (15)−0.1504 (2)0.0614 (5)
H20.12560.2581−0.14070.074*
C30.07915 (7)0.37643 (16)−0.2614 (2)0.0628 (5)
C40.06861 (7)0.49032 (17)−0.2811 (2)0.0680 (5)
H40.04040.5158−0.35550.082*
C50.10111 (8)0.56415 (16)−0.1875 (3)0.0712 (6)
H50.09520.6415−0.19920.085*
C60.14224 (7)0.52611 (15)−0.0766 (2)0.0633 (5)
H60.16410.5783−0.01540.076*
C70.19594 (6)0.37627 (15)0.0721 (2)0.0560 (5)
H70.22010.43190.10280.067*
C80.20630 (6)0.27679 (14)0.1490 (2)0.0527 (4)
C90.25275 (7)0.25541 (17)0.2757 (2)0.0606 (5)
C100.28732 (8)0.3502 (2)0.3368 (3)0.0772 (6)
H10A0.31550.32190.41590.116*
H10B0.27050.40600.38840.116*
H10C0.29820.38380.24560.116*
C110.17337 (7)0.17457 (15)0.1156 (2)0.0560 (5)
C120.1062 (3)0.0766 (7)0.1660 (8)0.080 (2)0.59
H12A0.12220.00660.20950.095*0.59
H12B0.09510.06980.04690.095*0.59
C130.0635 (2)0.1021 (5)0.2428 (10)0.116 (2)0.59
H13A0.07550.11360.35950.174*0.59
H13B0.04060.03990.22450.174*0.59
H13C0.04700.16940.19390.174*0.59
C13'0.0614 (2)0.1029 (7)0.1166 (11)0.104 (2)0.41
H13D0.04680.16980.15140.156*0.41
H13E0.03930.03990.11580.156*0.41
H13F0.06680.11420.00740.156*0.41
C12'0.1100 (3)0.0790 (8)0.2341 (10)0.067 (2)0.41
H12C0.10610.07580.34730.081*0.41
H12D0.12410.00820.20710.081*0.41
N10.04577 (8)0.29598 (17)−0.3646 (2)0.0920 (6)
O10.05676 (9)0.19660 (18)−0.3537 (3)0.1630 (11)
O20.00831 (7)0.33048 (16)−0.4573 (2)0.1147 (7)
O30.26098 (5)0.15976 (13)0.32832 (18)0.0838 (5)
O40.17660 (6)0.10267 (12)0.01722 (17)0.0800 (5)
O50.14066 (5)0.17397 (11)0.20985 (18)0.0728 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0544 (10)0.0450 (9)0.0619 (10)0.0003 (7)0.0128 (8)0.0058 (7)
C20.0653 (12)0.0393 (9)0.0735 (11)0.0063 (8)0.0024 (9)0.0045 (8)
C30.0621 (11)0.0530 (11)0.0668 (10)0.0034 (9)0.0007 (9)0.0049 (8)
C40.0647 (12)0.0584 (12)0.0762 (12)0.0116 (9)0.0056 (10)0.0173 (9)
C50.0826 (14)0.0425 (10)0.0851 (13)0.0066 (9)0.0114 (11)0.0132 (9)
C60.0693 (12)0.0425 (10)0.0757 (11)−0.0043 (9)0.0112 (10)0.0082 (8)
C70.0508 (10)0.0484 (10)0.0657 (10)−0.0028 (7)0.0067 (8)0.0023 (8)
C80.0510 (9)0.0478 (9)0.0574 (9)0.0034 (7)0.0081 (7)0.0014 (7)
C90.0547 (10)0.0651 (13)0.0608 (10)0.0036 (9)0.0103 (8)0.0054 (9)
C100.0618 (12)0.0905 (16)0.0716 (12)−0.0141 (11)−0.0020 (10)0.0072 (11)
C110.0587 (11)0.0434 (10)0.0609 (10)0.0077 (7)0.0027 (8)0.0047 (8)
C120.079 (4)0.064 (3)0.098 (5)−0.026 (2)0.023 (4)−0.008 (3)
C130.076 (3)0.080 (3)0.200 (6)−0.016 (3)0.048 (4)0.004 (5)
C13'0.063 (4)0.069 (4)0.167 (7)−0.001 (3)−0.003 (5)−0.006 (6)
C12'0.075 (5)0.052 (3)0.075 (5)−0.002 (3)0.017 (4)0.010 (4)
N10.0897 (14)0.0633 (12)0.1012 (14)0.0036 (10)−0.0255 (11)−0.0002 (10)
O10.167 (2)0.0637 (13)0.196 (2)0.0117 (12)−0.0941 (17)−0.0253 (12)
O20.0937 (12)0.0909 (12)0.1271 (14)0.0037 (10)−0.0454 (11)0.0030 (10)
O30.0748 (10)0.0686 (10)0.0951 (10)0.0104 (7)−0.0090 (8)0.0172 (8)
O40.1037 (12)0.0516 (8)0.0834 (9)0.0019 (7)0.0182 (8)−0.0095 (7)
O50.0674 (9)0.0496 (8)0.1055 (10)−0.0087 (6)0.0277 (8)−0.0052 (7)

Geometric parameters (Å, °)

C1—C21.382 (2)C10—H10C0.9600
C1—C61.399 (2)C11—O41.195 (2)
C1—C71.465 (2)C11—O51.319 (2)
C2—C31.372 (3)C12—O51.486 (6)
C2—H20.9300C12—C131.487 (7)
C3—C41.379 (3)C12—H12A0.9700
C3—N11.461 (3)C12—H12B0.9700
C4—C51.364 (3)C13—H13A0.9600
C4—H40.9300C13—H13B0.9600
C5—C61.369 (3)C13—H13C0.9600
C5—H50.9300C13'—C12'1.500 (8)
C6—H60.9300C13'—H13D0.9600
C7—C81.338 (2)C13'—H13E0.9600
C7—H70.9300C13'—H13F0.9600
C8—C91.488 (3)C12'—O51.446 (8)
C8—C111.500 (2)C12'—H12C0.9700
C9—O31.215 (2)C12'—H12D0.9700
C9—C101.485 (3)N1—O11.211 (3)
C10—H10A0.9600N1—O21.213 (2)
C10—H10B0.9600
C2—C1—C6117.59 (17)C9—C10—H10C109.5
C2—C1—C7124.16 (16)H10A—C10—H10C109.5
C6—C1—C7118.25 (16)H10B—C10—H10C109.5
C3—C2—C1119.53 (16)O4—C11—O5124.43 (17)
C3—C2—H2120.2O4—C11—C8124.37 (17)
C1—C2—H2120.2O5—C11—C8111.19 (14)
C2—C3—C4122.85 (18)O5—C12—C13105.2 (5)
C2—C3—N1118.70 (17)O5—C12—H12A110.7
C4—C3—N1118.44 (17)C13—C12—H12A110.7
C5—C4—C3117.52 (17)O5—C12—H12B110.7
C5—C4—H4121.2C13—C12—H12B110.7
C3—C4—H4121.2H12A—C12—H12B108.8
C4—C5—C6121.01 (18)C12'—C13'—H13D109.5
C4—C5—H5119.5C12'—C13'—H13E109.5
C6—C5—H5119.5H13D—C13'—H13E109.5
C5—C6—C1121.46 (18)C12'—C13'—H13F109.5
C5—C6—H6119.3H13D—C13'—H13F109.5
C1—C6—H6119.3H13E—C13'—H13F109.5
C8—C7—C1129.51 (17)O5—C12'—C13'103.4 (6)
C8—C7—H7115.2O5—C12'—H12C111.1
C1—C7—H7115.2C13'—C12'—H12C111.1
C7—C8—C9123.05 (17)O5—C12'—H12D111.1
C7—C8—C11124.25 (16)C13'—C12'—H12D111.1
C9—C8—C11112.68 (15)H12C—C12'—H12D109.1
O3—C9—C10121.61 (18)O1—N1—O2122.5 (2)
O3—C9—C8118.35 (17)O1—N1—C3118.14 (19)
C10—C9—C8120.03 (17)O2—N1—C3119.4 (2)
C9—C10—H10A109.5C11—O5—C12'125.8 (4)
C9—C10—H10B109.5C11—O5—C12110.2 (3)
H10A—C10—H10B109.5
C6—C1—C2—C3−1.6 (3)C11—C8—C9—C10−173.76 (16)
C7—C1—C2—C3178.23 (17)C7—C8—C11—O491.9 (2)
C1—C2—C3—C4−0.1 (3)C9—C8—C11—O4−87.0 (2)
C1—C2—C3—N1179.14 (17)C7—C8—C11—O5−88.6 (2)
C2—C3—C4—C51.4 (3)C9—C8—C11—O592.48 (17)
N1—C3—C4—C5−177.85 (18)C2—C3—N1—O1−3.5 (3)
C3—C4—C5—C6−0.9 (3)C4—C3—N1—O1175.8 (2)
C4—C5—C6—C1−0.9 (3)C2—C3—N1—O2176.3 (2)
C2—C1—C6—C52.1 (3)C4—C3—N1—O2−4.4 (3)
C7—C1—C6—C5−177.72 (17)O4—C11—O5—C12'12.4 (5)
C2—C1—C7—C8−20.0 (3)C8—C11—O5—C12'−167.1 (4)
C6—C1—C7—C8159.84 (18)O4—C11—O5—C12−4.6 (4)
C1—C7—C8—C9−179.60 (16)C8—C11—O5—C12175.9 (4)
C1—C7—C8—C111.6 (3)C13'—C12'—O5—C11−98.1 (7)
C7—C8—C9—O3−173.65 (17)C13'—C12'—O5—C12−49.8 (16)
C11—C8—C9—O35.3 (2)C13—C12—O5—C11−164.4 (4)
C7—C8—C9—C107.3 (3)C13—C12—O5—C12'55.7 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.573.414 (3)152
C6—H6···O3ii0.932.493.381 (2)161
C10—H10C···O4iii0.962.443.350 (3)159

Symmetry codes: (i) −x, −y+1, −z−1; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2486).

References

  • Benetti, S., Romagnoli, R., Risi, C. D., Spalluto, G. & Zanirato, V. (1995). Chem. Rev.95, 1065–1114.
  • Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Correa, W. H. & Scott, J. L. (2001). Green Chem.3, 296–301.
  • Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Simon, C., Constantieux, T. & Rodriguez, J. (2004). Eur. J. Org. Chem. pp. 4957–4980.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography