PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2450.
Published online 2008 November 26. doi:  10.1107/S1600536808037732
PMCID: PMC2960104

4,4′,6,6′-Tetra­bromo-2,2′-(2,8-diazonia-5-azanona-1,8-diene-1,9-diyl)diphenolate

Abstract

In the zwitterionic title compound, C18H17Br4N3O2, the two salicylaldimine groups form a dihedral angle of 51.94 (2)° and the dihedral angle between the aromatic ring planes is 51.14 (2)°. One of the C atoms adjacent to the aza N atom is disordered over two positions; the site-occupancy factors are 0.51 (1) and 0.49 (1). There are two strong intra­molecular N—H(...)O hydrogen bonds in the mol­ecule.

Related literature

For general background on the use of Schiff bases in metal complexes, see: Vigato et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2450-scheme1.jpg

Experimental

Crystal data

  • C18H17Br4N3O2
  • M r = 626.99
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2450-efi1.jpg
  • a = 9.4506 (11) Å
  • b = 9.1242 (11) Å
  • c = 23.618 (3) Å
  • β = 94.774 (2)°
  • V = 2029.5 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 7.95 mm−1
  • T = 293 (2) K
  • 0.26 × 0.21 × 0.19 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.149, T max = 0.227
  • 17118 measured reflections
  • 4693 independent reflections
  • 3747 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.095
  • S = 1.05
  • 4693 reflections
  • 256 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 2.07 e Å−3
  • Δρmin = −0.94 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: XP in SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037732/bq2108sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037732/bq2108Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Fund of Zhejiang Textile and Fashion College for financial support.

supplementary crystallographic information

Comment

The Schiff bases are widely employed as ligands in coordination chemistry. These ligands are readily available, versatile and, depending on the nature of the starting materials (primary amines and carbonyl precursors), they exhibit various denticities and functionalities. Moreover, the number, the nature, and the relative position of the donor atoms of a Schiff base ligand allow a good control over the stereochemistry of the metallic centers, as well as over the number of the metal ions within homo- and heteropolynuclear complexes. All these advantages make Schiff bases very good candidates in the effort to synthesize metal complexes of interest in bioinorganic chemistry, catalysis, encapsulation, transport and separation processes, magnetochemistry (Vigato et al., 2007). So we report here the crystal structure of the new Schiff base ligand, 4,4',6,6'-Tetrabromo-2,2'-[3-azapentane- 1,5-diylbis(nitrilomethylidyne)]diphenol(I).

The molecular structure of (I) is illustrated in Fig. 1. The two pendant moieties in a cis conformation attach to the ends of the C—C—N—C—C backbone. The N2 atom exhibits tetrahedral sp3 hybridization, whereas the two amide N atoms display planar sp2 hybridization. There is no H atom attached to O1 and O2 atoms. Instead these H atoms are attached to the N1 and N3 atoms. The double-bonds C7—N1 (1.295 (6) Å) and C12—N3 (1.296 (6) Å) show the typical character of Schiff base. The dihedral angle between the salicylaldimine groups is 51.94 (2)°. The crystal structure of (I) is stabilized by intramolecular N—H···O hydrogen bonding. The C10 atom is disorder over two positions with the site-occupancy factors of 0.51 (1) and 0.49 (1). The larger than normal range of thermal motion is mostly due to the difference between the disordered group and the other atoms which are not disordered.

Experimental

N-(2-aminoethyl)ethane-1,2-diamine (0.01 mol, 1.03 g) and 2-hydroxy-3,5-dibromobenzaldehyde(0.02 mol, 5.60 g) were dissolved in 20 ml e thanol and the solution was stirred for 3 h. After filtration and evaporation, a pure yellow product was recrystallized from ethanol. Yield: 81.7%. Calcd. for C18H17Br4N3O2: C, 34.48; H, 2.73; N, 6.70; Found: C, 34.59; H, 2.62; N, 6.81%.

Refinement

All H atoms except the N attached H1A and H3A which refined freely were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93%A, 0.97%A; N—H = 0.86 Å; and Uiso(H) values equal to 1.2 UeqC.

Figures

Fig. 1.
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines show H-bondings. Only the major component is shown.

Crystal data

C18H17Br4N3O2F000 = 1208
Mr = 626.99Dx = 2.052 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5793 reflections
a = 9.4506 (11) Åθ = 1.0–27.6º
b = 9.1242 (11) ŵ = 7.95 mm1
c = 23.618 (3) ÅT = 293 (2) K
β = 94.774 (2)ºBLOCK, yellow
V = 2029.5 (4) Å30.26 × 0.21 × 0.19 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer4693 independent reflections
Radiation source: fine-focus sealed tube3747 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.040
T = 293(2) Kθmax = 27.6º
[var phi] and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1997)h = −12→12
Tmin = 0.149, Tmax = 0.227k = −11→10
17118 measured reflectionsl = −30→30

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095  w = 1/[σ2(Fo2) + (0.0444P)2 + 3.6177P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4693 reflectionsΔρmax = 2.07 e Å3
256 parametersΔρmin = −0.94 e Å3
6 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C11.1639 (4)1.1651 (4)0.03605 (16)0.0255 (8)
C21.2507 (4)1.0675 (4)0.00631 (15)0.0244 (8)
C31.2518 (4)0.9186 (4)0.01388 (16)0.0260 (8)
H31.30970.8596−0.00650.031*
C41.1645 (4)0.8557 (4)0.05281 (18)0.0280 (9)
C51.0778 (4)0.9402 (5)0.08246 (17)0.0277 (8)
H51.01970.89680.10760.033*
C61.0763 (4)1.0945 (5)0.07503 (16)0.0252 (8)
C70.9904 (4)1.1819 (5)0.10911 (17)0.0286 (9)
H70.93411.13630.13440.034*
C80.9087 (5)1.4217 (5)0.13912 (18)0.0362 (10)
H8A0.97341.48580.16150.043*
H8B0.85661.36470.16510.043*
C90.8055 (5)1.5135 (5)0.10130 (19)0.0367 (10)
H9A0.76931.59250.12350.044*
H9B0.85511.55670.07110.044*
C100.5604 (11)1.4631 (12)0.1098 (5)0.0500 (18)0.501 (9)
H10A0.59281.47770.14950.060*0.501 (9)
H10B0.51881.55440.09550.060*0.501 (9)
C10'0.5427 (11)1.4357 (13)0.0666 (5)0.0500 (18)0.499 (9)
H10C0.51681.39880.02860.060*0.499 (9)
H10D0.51601.53830.06700.060*0.499 (9)
C110.4590 (6)1.3573 (6)0.1061 (3)0.0619 (17)
H11A0.42381.34490.06660.074*
H11B0.38011.38810.12700.074*
C120.4349 (4)1.1126 (5)0.14599 (17)0.0303 (9)
H120.33681.12420.14170.036*
C130.4899 (4)0.9821 (4)0.17117 (15)0.0235 (8)
C140.6423 (4)0.9637 (4)0.18085 (15)0.0228 (8)
C150.6853 (4)0.8296 (4)0.20880 (15)0.0227 (8)
C160.5925 (4)0.7256 (4)0.22511 (16)0.0259 (8)
H160.62600.64050.24330.031*
C170.4452 (4)0.7494 (4)0.21399 (17)0.0277 (8)
C180.3950 (4)0.8739 (5)0.18751 (16)0.0266 (8)
H180.29770.88750.18020.032*
Br11.37074 (5)1.15131 (5)−0.045130 (17)0.03273 (12)
Br21.17523 (5)0.64919 (5)0.06248 (2)0.04388 (14)
Br30.88370 (4)0.79812 (5)0.222670 (17)0.03065 (12)
Br40.31565 (5)0.60611 (6)0.23712 (2)0.04384 (14)
N10.9899 (4)1.3230 (4)0.10528 (15)0.0310 (8)
N20.6880 (4)1.4267 (5)0.07679 (18)0.0447 (10)
H20.68961.36610.04900.054*
N30.5128 (4)1.2170 (4)0.12852 (16)0.0342 (8)
O11.1653 (3)1.3038 (3)0.02905 (13)0.0365 (7)
O20.7294 (3)1.0603 (3)0.16669 (11)0.0265 (6)
H1A1.050 (6)1.358 (6)0.077 (2)0.052 (15)*
H3A0.603 (6)1.199 (6)0.137 (2)0.052 (16)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0248 (19)0.026 (2)0.0259 (19)0.0012 (16)0.0033 (14)0.0018 (15)
C20.0241 (19)0.026 (2)0.0231 (18)−0.0036 (15)0.0034 (14)0.0021 (15)
C30.0238 (19)0.024 (2)0.0295 (19)0.0033 (15)−0.0026 (15)−0.0002 (16)
C40.025 (2)0.021 (2)0.037 (2)−0.0015 (16)−0.0051 (16)0.0068 (17)
C50.0217 (19)0.030 (2)0.031 (2)−0.0039 (16)−0.0001 (15)0.0095 (17)
C60.0200 (18)0.030 (2)0.0259 (19)0.0013 (16)0.0020 (14)0.0043 (16)
C70.024 (2)0.033 (2)0.029 (2)0.0017 (17)0.0043 (15)0.0062 (17)
C80.040 (2)0.038 (3)0.032 (2)0.009 (2)0.0082 (18)−0.0018 (19)
C90.047 (3)0.028 (2)0.037 (2)0.009 (2)0.0102 (19)−0.0003 (18)
C100.050 (4)0.050 (4)0.050 (4)0.000 (3)0.004 (4)0.000 (4)
C10'0.050 (4)0.050 (4)0.050 (4)0.000 (3)0.004 (4)0.000 (4)
C110.046 (3)0.049 (3)0.094 (5)0.021 (3)0.026 (3)0.042 (3)
C120.0202 (19)0.041 (3)0.030 (2)0.0029 (17)0.0028 (15)0.0027 (18)
C130.0210 (18)0.029 (2)0.0210 (17)−0.0010 (15)0.0009 (14)−0.0005 (15)
C140.0226 (18)0.027 (2)0.0194 (17)−0.0007 (16)0.0040 (14)−0.0058 (15)
C150.0234 (18)0.024 (2)0.0205 (17)0.0015 (15)0.0031 (14)−0.0046 (15)
C160.034 (2)0.022 (2)0.0232 (18)0.0001 (16)0.0073 (15)−0.0017 (15)
C170.030 (2)0.027 (2)0.0271 (19)−0.0079 (17)0.0100 (15)−0.0036 (16)
C180.0217 (19)0.033 (2)0.0249 (18)0.0004 (16)0.0036 (14)−0.0046 (16)
Br10.0407 (2)0.0288 (2)0.0309 (2)0.00118 (18)0.01642 (17)0.00159 (16)
Br20.0412 (3)0.0226 (2)0.0680 (3)0.00063 (19)0.0055 (2)0.0134 (2)
Br30.0242 (2)0.0332 (2)0.0343 (2)0.00332 (17)0.00105 (15)0.00357 (17)
Br40.0378 (3)0.0422 (3)0.0531 (3)−0.0142 (2)0.0130 (2)0.0056 (2)
N10.0311 (19)0.031 (2)0.0321 (18)0.0054 (15)0.0115 (15)0.0043 (15)
N20.040 (2)0.042 (3)0.052 (2)−0.0019 (19)0.0068 (18)0.0108 (19)
N30.0275 (19)0.035 (2)0.040 (2)0.0112 (16)0.0045 (15)0.0110 (17)
O10.0476 (19)0.0202 (15)0.0448 (17)0.0028 (14)0.0220 (14)0.0030 (13)
O20.0227 (13)0.0244 (15)0.0325 (14)−0.0013 (11)0.0037 (11)0.0024 (11)

Geometric parameters (Å, °)

C1—O11.277 (5)C10'—N21.376 (11)
C1—C21.434 (6)C10'—C111.459 (12)
C1—C61.440 (5)C10'—H10C0.9700
C2—C31.370 (6)C10'—H10D0.9700
C2—Br11.892 (4)C11—N31.460 (6)
C3—C41.408 (6)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C51.360 (6)C12—N31.293 (6)
C4—Br21.900 (4)C12—C131.411 (6)
C5—C61.419 (6)C12—H120.9300
C5—H50.9300C13—C181.409 (6)
C6—C71.433 (6)C13—C141.449 (5)
C7—N11.290 (6)C14—O21.270 (5)
C7—H70.9300C14—C151.433 (5)
C8—N11.463 (5)C15—C161.369 (6)
C8—C91.518 (6)C15—Br31.898 (4)
C8—H8A0.9700C16—C171.412 (6)
C8—H8B0.9700C16—H160.9300
C9—N21.445 (6)C17—C181.363 (6)
C9—H9A0.9700C17—Br41.902 (4)
C9—H9B0.9700C18—H180.9300
C10—C111.359 (12)N1—H1A0.97 (6)
C10—N21.526 (11)N2—H20.8600
C10—H10A0.9700N3—H3A0.87 (6)
C10—H10B0.9700
O1—C1—C2122.7 (4)H10C—C10'—H10D107.3
O1—C1—C6122.6 (4)C10—C11—C10'43.6 (6)
C2—C1—C6114.7 (4)C10—C11—N3112.1 (7)
C3—C2—C1123.4 (4)C10'—C11—N3118.1 (6)
C3—C2—Br1119.1 (3)C10—C11—H11A109.2
C1—C2—Br1117.5 (3)C10'—C11—H11A66.7
C2—C3—C4119.4 (4)N3—C11—H11A109.2
C2—C3—H3120.3C10—C11—H11B109.2
C4—C3—H3120.3C10'—C11—H11B131.6
C5—C4—C3121.0 (4)N3—C11—H11B109.2
C5—C4—Br2121.9 (3)H11A—C11—H11B107.9
C3—C4—Br2117.0 (3)N3—C12—C13123.8 (4)
C4—C5—C6119.9 (4)N3—C12—H12118.1
C4—C5—H5120.0C13—C12—H12118.1
C6—C5—H5120.0C18—C13—C12119.1 (3)
C5—C6—C7118.9 (4)C18—C13—C14121.5 (4)
C5—C6—C1121.5 (4)C12—C13—C14119.4 (4)
C7—C6—C1119.5 (4)O2—C14—C15123.3 (3)
N1—C7—C6121.0 (4)O2—C14—C13122.4 (4)
N1—C7—H7119.5C15—C14—C13114.3 (3)
C6—C7—H7119.5C16—C15—C14123.9 (4)
N1—C8—C9111.0 (4)C16—C15—Br3119.6 (3)
N1—C8—H8A109.4C14—C15—Br3116.5 (3)
C9—C8—H8A109.4C15—C16—C17119.1 (4)
N1—C8—H8B109.4C15—C16—H16120.5
C9—C8—H8B109.4C17—C16—H16120.5
H8A—C8—H8B108.0C18—C17—C16120.9 (4)
N2—C9—C8111.6 (4)C18—C17—Br4119.8 (3)
N2—C9—H9A109.3C16—C17—Br4119.3 (3)
C8—C9—H9A109.3C17—C18—C13120.3 (4)
N2—C9—H9B109.3C17—C18—H18119.8
C8—C9—H9B109.3C13—C18—H18119.8
H9A—C9—H9B108.0C7—N1—C8125.1 (4)
C11—C10—N2113.3 (8)C7—N1—H1A112 (3)
C11—C10—H10A108.9C8—N1—H1A123 (3)
N2—C10—H10A108.9C10'—N2—C9139.4 (6)
C11—C10—H10B108.9C10'—N2—C1042.1 (6)
N2—C10—H10B108.9C9—N2—C10106.8 (5)
H10A—C10—H10B107.7C10'—N2—H289.2
N2—C10'—C11116.4 (8)C9—N2—H2126.6
N2—C10'—H10C108.2C10—N2—H2126.6
C11—C10'—H10C108.2C12—N3—C11124.8 (4)
N2—C10'—H10D108.2C12—N3—H3A111 (4)
C11—C10'—H10D108.2C11—N3—H3A123 (4)
O1—C1—C2—C3179.1 (4)C12—C13—C14—O2−1.1 (6)
C6—C1—C2—C3−0.1 (6)C18—C13—C14—C15−1.0 (5)
O1—C1—C2—Br1−0.1 (5)C12—C13—C14—C15177.5 (3)
C6—C1—C2—Br1−179.3 (3)O2—C14—C15—C16178.9 (4)
C1—C2—C3—C4−0.3 (6)C13—C14—C15—C160.3 (5)
Br1—C2—C3—C4178.9 (3)O2—C14—C15—Br3−1.6 (5)
C2—C3—C4—C50.8 (6)C13—C14—C15—Br3179.8 (3)
C2—C3—C4—Br2−178.4 (3)C14—C15—C16—C170.2 (6)
C3—C4—C5—C6−1.0 (6)Br3—C15—C16—C17−179.3 (3)
Br2—C4—C5—C6178.2 (3)C15—C16—C17—C18−0.1 (6)
C4—C5—C6—C7−176.5 (4)C15—C16—C17—Br4−179.5 (3)
C4—C5—C6—C10.7 (6)C16—C17—C18—C13−0.6 (6)
O1—C1—C6—C5−179.3 (4)Br4—C17—C18—C13178.8 (3)
C2—C1—C6—C5−0.1 (5)C12—C13—C18—C17−177.4 (4)
O1—C1—C6—C7−2.2 (6)C14—C13—C18—C171.2 (6)
C2—C1—C6—C7177.0 (3)C6—C7—N1—C8−178.4 (4)
C5—C6—C7—N1177.4 (4)C9—C8—N1—C7−120.1 (5)
C1—C6—C7—N10.2 (6)C11—C10'—N2—C9−101.3 (11)
N1—C8—C9—N272.0 (5)C11—C10'—N2—C10−50.4 (9)
N2—C10—C11—C10'−47.6 (8)C8—C9—N2—C10'136.5 (8)
N2—C10—C11—N360.4 (10)C8—C9—N2—C10103.6 (6)
N2—C10'—C11—C1057.2 (10)C11—C10—N2—C10'53.8 (10)
N2—C10'—C11—N3−36.2 (12)C11—C10—N2—C9−158.1 (7)
N3—C12—C13—C18−178.6 (4)C13—C12—N3—C11−175.4 (5)
N3—C12—C13—C142.9 (6)C10—C11—N3—C12158.2 (7)
C18—C13—C14—O2−179.6 (3)C10'—C11—N3—C12−153.8 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.97 (6)1.70 (6)2.553 (5)144 (5)
N3—H3A···O20.87 (6)1.84 (6)2.597 (4)144 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2108).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vigato, P. A., Tamburini, S. & Bertolo, L. (2007). Coord. Chem. Rev.251, 1311–1492.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography