PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): i80.
Published online 2008 November 8. doi:  10.1107/S1600536808035435
PMCID: PMC2960101

Redetermination of K4[Bi2Cl10]·4H2O

Abstract

In comparison with the previous refinement of tetra­potassium di-μ-chlorido-bis­[tetra­chloridobismuthate(III)] tetra­hydrate [Volkova, Udovenko, Levin & Shevchenko (1983). Koord. Khim. 9, 356–360], the current redetermination reveals anisotropic displacement parameters for all non-H atoms, localization of the H atoms, and higher precision of lattice parameters and inter­atomic distances. The crystal structure is built up of edge-sharing [Bi2Cl10]4− double octa­hedra with the bridging Cl atoms situated on a mirror plane, three K+ counter-cations (two of which are on mirror planes), and two water mol­ecules that are solely coordinated to the K+ cations. These building units are linked into a three-dimensional network structure. Additional O—H(...)Cl hydrogen bonds between the water mol­ecules and the complex anions stabilize this arrangement.

Related literature

The isotypic Br compound was reported by Laza­rini (1977 [triangle]). For related structures, see: Belkyal et al. (1997 [triangle]); Benachenhou et al. (1986 [triangle]). For general background, see: Larson (1970 [triangle]); Prince (1982 [triangle]); Watkin (1994 [triangle]).

Experimental

Crystal data

  • K4[Bi2Cl10]·4H2O
  • M r = 1000.94
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-00i80-efi2.jpg
  • a = 8.4310 (1) Å
  • b = 21.8444 (3) Å
  • c = 12.2561 (2) Å
  • V = 2257.21 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 17.49 mm−1
  • T = 295 (2) K
  • 0.28 × 0.12 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.067, T max = 0.247
  • 26961 measured reflections
  • 4596 independent reflections
  • 2801 reflections with I > 3.0σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.017
  • wR(F 2) = 0.017
  • S = 1.08
  • 2801 reflections
  • 114 parameters
  • All H-atom parameters refined
  • Δρmax = 1.01 e Å−3
  • Δρmin = −0.82 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2001 [triangle]); software used to prepare material for publication: CRYSTALS and publCIF (Westrip, 2008 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035435/wm2201sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035435/wm2201Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Some bismuth-containing compounds (Belkyal et al., 1997; Benachenhou et al., 1986) exhibit phase transitions and have interesting physical properties which make them the object of an intensive research due to their potential application in catalysis.

Under investigation of a series of these materials, we have selected the K4[Bi2Cl10].4H2O compound and redetermined its structure. For the previous crystallographic study on this compound, see: Volkova et al. (1983). The isotypic Br compound was reported by Lazarini (1977).

The structure of the title compound can be described by [Bi2Cl10]4- pairs of octahedra, K+ cations and water molecules (Fig. 1), forming a three-dimensional network (Fig. 2). The [Bi2Cl10]4- anions are formed by pairs of distorted [BiCl6] octahedra sharing an edge. The mean Bi—Cl distances range from 2.5954 (8) to 2.8724 (7) Å with the Cl—Bi—Cl angles varying between 80.58 (2) and 94.82 (3)°, likewise showing the distortions of the BiCl6 octahedra. Compared to the previous study, the distortion of the [BiCl6] octahedra is relatively lower. The structure is additionally stabilized by the presence of hydrogen bonds of the type O—H···Cl between water molecules and the binuclear complex anions. For the polyhedra around the K+ cations the coordinations are similar. Whereas two K+ cations (K8 and K9) are located at the 4c sites (m symmetry), the third cation (K10) is on a general position. However, all K+ cations are surrounded by two water O atoms and seven Cl atoms, leading to irregular [KO2Cl7] polyhedra.

Experimental

(BiO)2CO3 was dissolved in concentrated hydrochloric acid in order to prepare a BiCl3 solution. The latter was then added to an aqueous KCl solution in a molar ratio of 1:2. The resulting solution has been kept under stirring for 1 h and was allowed to stand at room temperature for some days. After this time colourless crystals of the title compound were obtained and isolated from the acid solution by filtration.

Refinement

The H atom positions were located from difference Fourier maps and were refined freely.

Figures

Fig. 1.
Part of the crystal structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. [Symmetry codes: (i) x, y, z + 1; (ii) -x, -1/2 - y, z + 1.]
Fig. 2.
Projection of the K4[Bi2Cl10].4H2O structure along the a axis, showing the pairs of edge-sharing [BiCl6] octahedra.

Crystal data

K4[Bi2Cl10]·4H2OF000 = 1808
Mr = 1000.94Dx = 2.945 Mg m3
Orthorhombic, PnmaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 4596 reflections
a = 8.43100 (10) Åθ = 1.9–34.2º
b = 21.8444 (3) ŵ = 17.49 mm1
c = 12.2561 (2) ÅT = 295 (2) K
V = 2257.21 (6) Å3Prism, colourless
Z = 40.28 × 0.12 × 0.08 mm

Data collection

Bruker APEXII CCD diffractometer2801 reflections with I > 3.0σ(I)
Monochromator: graphiteRint = 0.034
T = 295(2) Kθmax = 34.2º
ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 2006)h = −10→12
Tmin = 0.067, Tmax = 0.247k = −22→33
26961 measured reflectionsl = −19→17
4596 independent reflections

Refinement

Refinement on FHydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.017  Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.260 0.753E-01 0.968E-01
wR(F2) = 0.017(Δ/σ)max = 0.002
S = 1.08Δρmax = 1.01 e Å3
2801 reflectionsΔρmin = −0.82 e Å3
114 parametersExtinction correction: Larson (1970), Equation 22
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 33.8 (8)
Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Bi10.367812 (10)−0.349919 (4)0.996881 (8)0.0204
Cl20.49635 (11)−0.35057 (4)0.79938 (7)0.0394
Cl30.17101 (13)−0.25000.92700 (9)0.0308
Cl40.15802 (11)−0.43464 (4)0.95182 (7)0.0360
Cl50.56356 (13)−0.25000.06223 (10)0.0308
Cl60.24213 (9)−0.34605 (4)0.20120 (6)0.0302
Cl70.57912 (10)−0.42888 (4)0.05937 (7)0.0331
K80.44796 (13)−0.25000.34052 (9)0.0349
K90.28965 (14)−0.25000.66630 (9)0.0379
K100.02601 (12)−0.54772 (5)0.80949 (8)0.0506
O110.3695 (3)−0.16188 (16)0.5001 (3)0.0504
O120.2459 (5)−0.47915 (15)0.6858 (3)0.0552
H130.278 (9)−0.140 (3)0.487 (5)0.10 (2)*
H80.205 (8)−0.481 (3)0.629 (5)0.09 (2)*
H140.428 (8)−0.142 (3)0.535 (5)0.09 (2)*
H150.223 (5)−0.445 (8)0.707 (6)0.08 (3)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Bi10.02127 (5)0.01939 (4)0.02050 (4)0.00016 (3)0.00160 (4)−0.00009 (4)
Cl20.0440 (4)0.0469 (5)0.0272 (3)0.0084 (4)0.0102 (3)0.0035 (3)
Cl30.0218 (5)0.0365 (6)0.0342 (5)0.0000−0.0043 (4)0.0000
Cl40.0351 (4)0.0338 (4)0.0392 (4)−0.0049 (3)−0.0057 (3)−0.0086 (3)
Cl50.0228 (5)0.0305 (5)0.0390 (5)0.0000−0.0037 (4)0.0000
Cl60.0316 (3)0.0338 (4)0.0252 (3)−0.0039 (3)0.0044 (3)−0.0028 (3)
Cl70.0338 (4)0.0302 (4)0.0354 (4)0.0042 (3)−0.0028 (3)0.0025 (3)
K80.0329 (5)0.0334 (5)0.0383 (5)0.0000−0.0061 (4)0.0000
K90.0370 (6)0.0432 (6)0.0335 (5)0.0000−0.0037 (4)0.0000
K100.0460 (5)0.0586 (5)0.0472 (5)−0.0134 (4)0.0086 (4)−0.0190 (4)
O110.0291 (13)0.0507 (16)0.071 (2)−0.0020 (11)−0.0121 (15)−0.0093 (17)
O120.076 (2)0.0449 (17)0.0446 (17)0.0092 (17)0.0009 (17)−0.0044 (14)

Geometric parameters (Å, °)

Bi1—Cl7i2.5954 (8)Bi1—Cl32.8724 (7)
Bi1—Cl42.6190 (8)O11—H130.92 (7)
Bi1—Cl22.6522 (8)O11—H140.78 (7)
Bi1—Cl6i2.7205 (7)O12—H80.79 (6)
Bi1—Cl5ii2.8512 (7)O12—H150.81 (12)
Cl6i—Bi1—Cl7i90.94 (3)Cl6i—Bi1—Cl487.31 (3)
Cl6i—Bi1—Cl5ii86.74 (3)Cl7i—Bi1—Cl493.22 (3)
Cl7i—Bi1—Cl5ii91.64 (2)Cl5ii—Bi1—Cl4172.37 (3)
Cl6i—Bi1—Cl2178.11 (3)Cl2—Bi1—Cl494.57 (3)
Cl7i—Bi1—Cl289.16 (3)Cl3—Bi1—Cl494.82 (3)
Cl5ii—Bi1—Cl291.37 (3)Bi1iii—Cl3—Bi198.91 (3)
Cl6i—Bi1—Cl391.48 (3)Bi1iv—Cl5—Bi1v99.91 (3)
Cl7i—Bi1—Cl3171.71 (3)H13—O11—H14110 (6)
Cl5ii—Bi1—Cl380.58 (2)H8—O12—H15103 (7)
Cl2—Bi1—Cl388.16 (3)

Symmetry codes: (i) x, y, z+1; (ii) x, −y−1/2, z+1; (iii) x, −y−1/2, z; (iv) x, y, z−1; (v) x, −y−1/2, z−1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O11—H13···Cl7vi0.92 (7)2.32 (7)3.234 (4)169 (7)
O11—H14···Cl4vii0.78 (7)2.56 (8)3.273 (3)150 (9)
O12—H8···Cl7viii0.79 (6)2.78 (7)3.497 (4)152 (7)
O12—H15···Cl2ix0.81 (17)2.81 (8)3.514 (3)145 (9)

Symmetry codes: (vi) x−1/2, −y−1/2, −z+1/2; (vii) x+1/2, −y−1/2, −z+3/2; (viii) x−1/2, y, −z+1/2; (ix) x−1/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2201).

References

  • Belkyal, L., Mokhlisse, R., Tanouti, B., Hesse, K.-F. & Depmeier, W. (1997). Eur. J. Solid. State Inorg. Chem.34, 1085–1091.
  • Benachenhou, F., Mairesse, G., Nowogrocki, G. & Thomas, D. (1986). J. Solid State Chem.65, 13–26.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Brandenburg, K. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2006). APEX2 and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
  • Lazarini, F. (1977). Acta Cryst. B33, 1954–1956.
  • Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science New York: Springer-Verlag.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Volkova, L. M., Udovenko, A. A., Levin, A. N. & Shevchenko, V. Ya. (1983). Koord. Khim.9, 356–360.
  • Watkin, D. (1994). Acta Cryst. A50, 411–437.
  • Westrip, S. P. (2008). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography