PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2335.
Published online 2008 November 13. doi:  10.1107/S1600536808037033
PMCID: PMC2960098

2,2-Dimethyl-N,N′-bis­(4-nitro­benzyl­idene)propane-1,3-diamine

Abstract

In the title compound, C19H20N4O4, a potential bidentate Schiff base ligand, each imino (C=N) functional group is coplanar with the adjacent benzene ring. The two benzene rings form a dihedral angle of 10.52 (6)°. Inter­molecular C—H(...)O contacts link neighbouring mol­ecules into supra­molecular array with an R 2 2(32) ring motif and a C—H(...)π contact is also present.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related structures, see: Li et al. (2005 [triangle]); Bomfim et al. (2005 [triangle]); Glidewell et al. (2005 [triangle], 2006 [triangle]); Sun et al. (2004 [triangle]); Fun et al. (2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2335-scheme1.jpg

Experimental

Crystal data

  • C19H20N4O4
  • M r = 368.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2335-efi1.jpg
  • a = 7.8219 (1) Å
  • b = 19.9716 (4) Å
  • c = 12.0125 (3) Å
  • β = 92.831 (1)°
  • V = 1874.25 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100 (1) K
  • 0.45 × 0.19 × 0.08 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.959, T max = 0.993
  • 21845 measured reflections
  • 6784 independent reflections
  • 4307 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.152
  • S = 1.04
  • 6784 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037033/tk2324sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037033/tk2324Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support.

supplementary crystallographic information

Comment

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and supramolecular architectures. Structures of Schiff bases derived from substituted benzaldehydes and closely related to the title compound, (I), have been reported previously (Li et al., 2005; Bomfim et al., 2005; Glidewell et al., 2005, 2006; Sun et al., 2004; Fun et al., 2008a,b).

Each imino (C ═N) functional group in (I), Fig. 1, is co-planar with the adjacent benzene ring. Intramolecular C—H···O contacts form five-membered rings, producing S(5) ring motifs (Bernstein et al., 1995). The two benzene rings form a dihedral angle of 10.52 (6)°. Intermolecular C—H···O contacts link neighbouring molecules into supramolecular array with R22(32) ring motif, Fig. 2 and Table 1. The crystal structure is further stabilized by weak C—H···π interactions, ( Table 1.

Experimental

The synthetic method has been described earlier (Fun et al., 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution of (I) held at room temperature.

Refinement

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 - 0.97 Å, and with Uiso(H) = 1.2-1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with atom labels and 50% displacement ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of (I), viewed down the c-axis showing the linking of neighbouring molecules via R22(32) ring motifs. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C19H20N4O4F000 = 776
Mr = 368.39Dx = 1.306 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3284 reflections
a = 7.8219 (1) Åθ = 2.7–28.9º
b = 19.9716 (4) ŵ = 0.09 mm1
c = 12.0125 (3) ÅT = 100 (1) K
β = 92.831 (1)ºBlock, colourless
V = 1874.25 (6) Å30.45 × 0.19 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer6784 independent reflections
Radiation source: fine-focus sealed tube4307 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.048
T = 100(1) Kθmax = 32.6º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −11→11
Tmin = 0.959, Tmax = 0.993k = −30→24
21845 measured reflectionsl = −16→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.152  w = 1/[σ2(Fo2) + (0.063P)2 + 0.2454P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
6784 reflectionsΔρmax = 0.36 e Å3
244 parametersΔρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.36590 (14)0.55914 (6)0.45685 (10)0.0335 (3)
O21.36634 (15)0.48567 (6)0.32431 (10)0.0376 (3)
O30.04816 (14)0.42804 (6)1.17606 (9)0.0317 (3)
O40.13096 (14)0.52456 (5)1.11560 (10)0.0313 (3)
N10.91963 (15)0.26572 (6)0.65265 (11)0.0229 (3)
N20.44695 (14)0.27677 (6)0.73309 (11)0.0232 (3)
N31.32746 (15)0.50399 (7)0.41710 (12)0.0263 (3)
N40.12292 (14)0.46308 (6)1.10932 (10)0.0240 (3)
C11.07594 (17)0.43692 (7)0.64720 (12)0.0214 (3)
H1A1.03480.45120.71460.026*
C21.17251 (17)0.48038 (7)0.58500 (12)0.0222 (3)
H2A1.19830.52340.61030.027*
C31.22894 (16)0.45767 (7)0.48441 (12)0.0212 (3)
C41.19437 (18)0.39416 (8)0.44352 (13)0.0254 (3)
H4A1.23370.38060.37530.031*
C51.09965 (17)0.35135 (7)0.50692 (13)0.0245 (3)
H5A1.07510.30830.48130.029*
C61.04054 (16)0.37232 (7)0.60928 (12)0.0195 (3)
C70.94133 (16)0.32672 (7)0.67822 (12)0.0205 (3)
H7A0.89360.34320.74210.025*
C80.81845 (17)0.22410 (7)0.72454 (12)0.0220 (3)
H8A0.78330.25060.78710.026*
H8B0.88850.18740.75370.026*
C90.65824 (17)0.19558 (7)0.66089 (12)0.0211 (3)
C100.52727 (18)0.25158 (7)0.63434 (13)0.0228 (3)
H10A0.58430.28830.59860.027*
H10B0.43910.23460.58210.027*
C110.44070 (16)0.33980 (7)0.74535 (12)0.0211 (3)
H11A0.49010.36730.69330.025*
C120.35718 (16)0.37059 (7)0.83998 (12)0.0192 (3)
C130.25521 (16)0.33267 (7)0.90909 (12)0.0214 (3)
H13A0.23840.28730.89460.026*
C140.17916 (17)0.36202 (7)0.99872 (12)0.0222 (3)
H14A0.11250.33691.04530.027*
C150.20531 (16)0.43004 (7)1.01696 (12)0.0203 (3)
C160.30321 (16)0.46938 (7)0.94913 (12)0.0210 (3)
H16A0.31730.51490.96270.025*
C170.37936 (17)0.43876 (7)0.86057 (12)0.0215 (3)
H17A0.44610.46410.81430.026*
C180.58134 (19)0.14167 (8)0.73376 (14)0.0289 (3)
H18A0.48110.12320.69590.043*
H18B0.55070.16110.80310.043*
H18C0.66390.10680.74810.043*
C190.70671 (19)0.16493 (7)0.54990 (13)0.0259 (3)
H19A0.60590.14770.51110.039*
H19B0.78700.12920.56380.039*
H19C0.75770.19870.50520.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0318 (6)0.0268 (6)0.0423 (7)−0.0069 (5)0.0043 (5)0.0051 (5)
O20.0377 (6)0.0447 (7)0.0314 (7)−0.0070 (5)0.0128 (5)0.0041 (5)
O30.0332 (6)0.0354 (6)0.0276 (6)−0.0072 (5)0.0108 (5)−0.0019 (5)
O40.0381 (6)0.0230 (6)0.0334 (7)0.0044 (4)0.0082 (5)−0.0026 (5)
N10.0213 (5)0.0232 (6)0.0244 (7)−0.0026 (4)0.0020 (5)−0.0003 (5)
N20.0211 (5)0.0225 (6)0.0261 (7)0.0004 (4)0.0023 (5)−0.0012 (5)
N30.0185 (5)0.0297 (7)0.0308 (7)−0.0009 (5)0.0019 (5)0.0075 (6)
N40.0202 (5)0.0280 (7)0.0238 (7)0.0009 (5)0.0024 (5)−0.0016 (5)
C10.0197 (6)0.0234 (7)0.0211 (7)0.0017 (5)0.0010 (5)−0.0015 (6)
C20.0197 (6)0.0212 (7)0.0255 (8)−0.0003 (5)−0.0016 (5)−0.0005 (6)
C30.0162 (6)0.0235 (7)0.0240 (7)0.0008 (5)0.0021 (5)0.0055 (6)
C40.0255 (7)0.0286 (8)0.0229 (8)−0.0007 (6)0.0076 (6)−0.0018 (6)
C50.0254 (7)0.0228 (7)0.0257 (8)−0.0011 (5)0.0051 (6)−0.0037 (6)
C60.0173 (6)0.0204 (6)0.0207 (7)0.0001 (5)0.0011 (5)0.0007 (5)
C70.0187 (6)0.0234 (7)0.0196 (7)−0.0003 (5)0.0018 (5)−0.0004 (6)
C80.0239 (6)0.0208 (7)0.0215 (7)−0.0013 (5)0.0020 (5)0.0012 (6)
C90.0218 (6)0.0177 (6)0.0238 (7)−0.0015 (5)0.0013 (5)−0.0003 (6)
C100.0241 (6)0.0216 (7)0.0227 (8)0.0002 (5)0.0002 (5)−0.0019 (6)
C110.0195 (6)0.0219 (7)0.0220 (7)−0.0001 (5)0.0018 (5)0.0010 (6)
C120.0170 (6)0.0200 (6)0.0204 (7)0.0021 (5)−0.0001 (5)0.0015 (5)
C130.0195 (6)0.0179 (6)0.0268 (8)−0.0007 (5)0.0015 (5)0.0002 (6)
C140.0192 (6)0.0229 (7)0.0248 (8)0.0000 (5)0.0036 (5)0.0046 (6)
C150.0180 (6)0.0228 (7)0.0201 (7)0.0024 (5)0.0010 (5)−0.0002 (5)
C160.0207 (6)0.0180 (6)0.0242 (7)0.0002 (5)0.0007 (5)0.0003 (6)
C170.0207 (6)0.0211 (7)0.0229 (7)−0.0005 (5)0.0027 (5)0.0031 (6)
C180.0282 (7)0.0228 (7)0.0357 (9)−0.0041 (6)0.0025 (6)0.0048 (7)
C190.0275 (7)0.0212 (7)0.0289 (8)0.0011 (5)−0.0008 (6)−0.0045 (6)

Geometric parameters (Å, °)

O1—N31.2319 (17)C8—H8B0.9700
O2—N31.2256 (17)C9—C181.530 (2)
O3—N41.2330 (15)C9—C191.532 (2)
O4—N41.2316 (16)C9—C101.539 (2)
N1—C71.2657 (18)C10—H10A0.9700
N1—C81.4597 (17)C10—H10B0.9700
N2—C111.2687 (18)C11—C121.4732 (19)
N2—C101.4591 (18)C11—H11A0.9300
N3—C31.4714 (18)C12—C171.3931 (19)
N4—C151.4671 (18)C12—C131.4014 (18)
C1—C61.3914 (19)C13—C141.3857 (19)
C1—C21.3921 (19)C13—H13A0.9300
C1—H1A0.9300C14—C151.389 (2)
C2—C31.383 (2)C14—H14A0.9300
C2—H2A0.9300C15—C161.3890 (18)
C3—C41.382 (2)C16—C171.3868 (19)
C4—C51.3840 (19)C16—H16A0.9300
C4—H4A0.9300C17—H17A0.9300
C5—C61.3990 (19)C18—H18A0.9600
C5—H5A0.9300C18—H18B0.9600
C6—C71.4768 (18)C18—H18C0.9600
C7—H7A0.9300C19—H19A0.9600
C8—C91.544 (2)C19—H19B0.9600
C8—H8A0.9700C19—H19C0.9600
C7—N1—C8118.34 (12)C10—C9—C8110.49 (11)
C11—N2—C10117.20 (12)N2—C10—C9113.01 (12)
O2—N3—O1123.55 (13)N2—C10—H10A109.0
O2—N3—C3118.19 (13)C9—C10—H10A109.0
O1—N3—C3118.26 (13)N2—C10—H10B109.0
O4—N4—O3123.39 (12)C9—C10—H10B109.0
O4—N4—C15118.14 (12)H10A—C10—H10B107.8
O3—N4—C15118.47 (12)N2—C11—C12121.65 (13)
C6—C1—C2120.46 (13)N2—C11—H11A119.2
C6—C1—H1A119.8C12—C11—H11A119.2
C2—C1—H1A119.8C17—C12—C13119.50 (12)
C3—C2—C1118.00 (13)C17—C12—C11119.26 (12)
C3—C2—H2A121.0C13—C12—C11121.24 (12)
C1—C2—H2A121.0C14—C13—C12120.69 (13)
C4—C3—C2123.10 (13)C14—C13—H13A119.7
C4—C3—N3118.70 (13)C12—C13—H13A119.7
C2—C3—N3118.18 (13)C13—C14—C15118.07 (12)
C3—C4—C5118.16 (13)C13—C14—H14A121.0
C3—C4—H4A120.9C15—C14—H14A121.0
C5—C4—H4A120.9C16—C15—C14122.80 (13)
C4—C5—C6120.52 (14)C16—C15—N4117.69 (12)
C4—C5—H5A119.7C14—C15—N4119.48 (12)
C6—C5—H5A119.7C17—C16—C15118.07 (13)
C1—C6—C5119.75 (13)C17—C16—H16A121.0
C1—C6—C7119.33 (12)C15—C16—H16A121.0
C5—C6—C7120.92 (13)C16—C17—C12120.85 (12)
N1—C7—C6121.69 (13)C16—C17—H17A119.6
N1—C7—H7A119.2C12—C17—H17A119.6
C6—C7—H7A119.2C9—C18—H18A109.5
N1—C8—C9111.56 (12)C9—C18—H18B109.5
N1—C8—H8A109.3H18A—C18—H18B109.5
C9—C8—H8A109.3C9—C18—H18C109.5
N1—C8—H8B109.3H18A—C18—H18C109.5
C9—C8—H8B109.3H18B—C18—H18C109.5
H8A—C8—H8B108.0C9—C19—H19A109.5
C18—C9—C19109.76 (12)C9—C19—H19B109.5
C18—C9—C10110.70 (11)H19A—C19—H19B109.5
C19—C9—C10107.51 (12)C9—C19—H19C109.5
C18—C9—C8107.98 (12)H19A—C19—H19C109.5
C19—C9—C8110.41 (11)H19B—C19—H19C109.5
C6—C1—C2—C31.0 (2)C11—N2—C10—C9131.95 (13)
C1—C2—C3—C4−0.2 (2)C18—C9—C10—N249.59 (16)
C1—C2—C3—N3178.53 (12)C19—C9—C10—N2169.47 (11)
O2—N3—C3—C44.2 (2)C8—C9—C10—N2−69.98 (14)
O1—N3—C3—C4−176.02 (13)C10—N2—C11—C12177.85 (12)
O2—N3—C3—C2−174.58 (13)N2—C11—C12—C17168.88 (14)
O1—N3—C3—C25.17 (19)N2—C11—C12—C13−11.5 (2)
C2—C3—C4—C5−0.4 (2)C17—C12—C13—C14−1.2 (2)
N3—C3—C4—C5−179.16 (13)C11—C12—C13—C14179.15 (13)
C3—C4—C5—C60.2 (2)C12—C13—C14—C150.8 (2)
C2—C1—C6—C5−1.2 (2)C13—C14—C15—C160.3 (2)
C2—C1—C6—C7178.54 (12)C13—C14—C15—N4178.38 (13)
C4—C5—C6—C10.6 (2)O4—N4—C15—C166.84 (19)
C4—C5—C6—C7−179.19 (13)O3—N4—C15—C16−173.73 (12)
C8—N1—C7—C6−179.39 (12)O4—N4—C15—C14−171.35 (13)
C1—C6—C7—N1−173.22 (14)O3—N4—C15—C148.09 (19)
C5—C6—C7—N16.5 (2)C14—C15—C16—C17−0.9 (2)
C7—N1—C8—C9118.97 (14)N4—C15—C16—C17−179.01 (12)
N1—C8—C9—C18168.26 (11)C15—C16—C17—C120.4 (2)
N1—C8—C9—C1948.27 (15)C13—C12—C17—C160.6 (2)
N1—C8—C9—C10−70.53 (14)C11—C12—C17—C16−179.76 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···O4i0.932.523.4330 (18)168
C17—H17A···O2ii0.932.483.4063 (18)171
C19—H19A···Cg1iii0.962.863.8058 (16)171

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+2, −y+1, −z+1; (iii) x, −y−1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2324).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fun, H.-K., Kargar, H. & Kia, R. (2008a). Acta Cryst. E64, o1308. [PMC free article] [PubMed]
  • Fun, H.-K., Kargar, H. & Kia, R. (2008b). Acta Cryst. E64, o2273. [PMC free article] [PubMed]
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551–o3553.
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1–o4. [PubMed]
  • Li, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156–o4157.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707–o1708.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography