PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1511–m1512.
Published online 2008 November 8. doi:  10.1107/S1600536808036039
PMCID: PMC2960095

Azido­(1,1-diphenyl­methanimine-κN)[hydridotris(pyrazolyl-κN 2)borato](triphenyl­phosphine-κP)ruthenium(II) diethyl ether solvate

Abstract

The reaction of [RuCl(C9H10BN6)(C18H15P)2] with benzo­phenone imine in methanol, in the presence of sodium azide, leads to the formation of the title compound, [Ru(C9H10BN6)(N3)(HN=CPh2)(C18H15P)]·C4H10O, which crystallizes as the diethyl ether solvate. In the crystal structure, the Ru atom is coordinated by three N atoms of one hydridotris(pyrazoly)borate anion, one P atom of one triphenyl­phosphine ligand, one N atom of the azide anion and one N atom of the benzophenone­imine ligand in a slightly distorted octa­hedral geometry. The azide anion is almost linear [177.0 (5)°], with an Ru—N—N angle of 125.9 (3)°. There is a small difference between the N—N distances [1.200 (5) and 1.164 (5) Å], the longer bond being adjacent to the Ru atom.

Related literature

For general background, see: Agrell (1971 [triangle]); Alcock et al. (1992 [triangle]); Burrows et al. (2001 [triangle]); Moloy & Petersen (1995 [triangle]); Pavlik et al. (2005 [triangle]); Slugovc et al. (1997 [triangle]); Trofimenko et al. (1993 [triangle]). For related structures, see: Dori & Ziolo (1973 [triangle]); Gemel et al. (1996 [triangle]); Meyer et al. (1998 [triangle]); Huynh et al. (2003 [triangle]); Slugovc et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1511-scheme1.jpg

Experimental

Crystal data

  • [Ru(C9H10BN6)(N3)(C13H11N)(C18H15P)]·C4H10O
  • M r = 873.76
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1511-efi1.jpg
  • a = 11.7387 (12) Å
  • b = 13.0535 (13) Å
  • c = 14.7187 (15) Å
  • α = 70.445 (2)°
  • β = 81.716 (2)°
  • γ = 88.040 (3)°
  • V = 2102.9 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.46 mm−1
  • T = 200 (2) K
  • 0.19 × 0.07 × 0.02 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.918, T max = 0.989
  • 16858 measured reflections
  • 7382 independent reflections
  • 4895 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.113
  • S = 1.01
  • 7382 reflections
  • 523 parameters
  • H-atom parameters constrained
  • Δρmax = 1.75 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: COLLECT (Nonius, 1999 [triangle]); cell refinement: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997 [triangle]); data reduction: HKL DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808036039/nc2120sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036039/nc2120Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the National Science Council, Taiwan (NSC 97-2113-M-036-001-MY2) and in part by the project of specific research fields of Tatung University, Taiwan (B96-C07-081) and the project of specific research fields in Chung Yuan Christian University, Taiwan (under grant CYCU-97-CR-CH).

supplementary crystallographic information

Comment

The hydridotris(pyrazoly)borate anion (Tp,HB(pz)3) has been used by Trofimenko as a ligand in various transition metal complexes (Trofimenko,1993). Ruthenium(II) hydridotripyrazolylborate complexes, Ru(Tp), are of interest for stoichiometric and catalytic transformations of organic molecules (Pavlik et al., 2005). The complex [Ru(Tp)Cl(PPh3)2] (Alock et al., 1992) has been used as the starting material for the synthesis of several complexes because the chloride atom and the PPh3 group can be easily substituted (Slugovc et al., 1997; Moloy & Petersen, 1995; Burrows, 2001). On the other hand, the azide anion N3- is a versatile ligand because it shows a variety of coordination modes and compounds with this ligand shows interesting thermal and photochemical reactivities (Dori & Ziolo, 1973; Meyer et al., 1998; Huynh et al., 2003).

In the crystal structure of the title compound, the environment about the ruthenium metal center corresponds to a slightly distorted octahedron and the bite angle of the Tp ligand leads to an average N—Ru1—N angle of 86.3°, which is only slightly distorted from 90° (Fig. 1). The three Ru1—N(Tp) bond lengths of 2.077 (3), 2.114 (4), and 2.084 (4) Å) are slightly longer than the average distance of 2.038 Å observed in other ruthenium Tp complexes (Gemel et al. 1996; Slugovc et al. 1998). The Ru1—N7 and N7—C10 bond lengths of 2.053 (3) and 1.304 (5) Å correspond to a single Ru—N and a double C=N bond. The angles around C10 of 122.3 (4)°, 118.6 (4)° and 119.1 (4)° indicate a sp2 hybridization.

The azide anion is almost linear (177.0 (5)°) and is coordinated to Ru with an Ru—N(8)—N(9) angle of 125.9 (3)°. There is a small difference between the N—N distances [1.200 (5) and 1.164 (5) Å], the longer being adjacent to the Ru atom. It is also noted the title complex shows a νas(N3) stretching band in a lower energy region, at 2036 cm-1,compared with the typical values of these bands in azido complexes (2120–2030 cm-1; Agrell, 1971).

Experimental

To a solution of [Ru(Tp)Cl(PPh3)2] (3.95 g, 4.50 mmol) in CH3OH (100 ml), an excess of benzophenoneimine (7.9 ml, 45.0 mmol) and NaN3 (2.93 g, 45.0 mmol) were added and the solution was refluxed for 120 min. Afterwards the reaction mixture was concentrated to approximately 10 ml and cooled to 253 K. The yellow precipitate which has formed was filtered off, washed with CH2Cl2and was dried under reduced pressure to give the title compound (2.34 g, 65% yield). The bright-yellow crystals used for X-ray structure analysis were obtained within 3 days by slow diffusion of diethyl ether into a solution of the title compound in CH2Cl2 at 273 K.

Refinement

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 - 0.99 Å and Uiso(H) = 1.2 or 1.5Ueq(C), B—H = 1.0 Å and Uiso(H) = 1.2Ueq(B), and N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
Molecular structure of (the title compound with labelling and displacement ellipsoids drawn at the 30% probability level (H atoms are shown as spheres of arbitrary radius).

Crystal data

[Ru(C9H10BN6)(N3)(C13H11N)(C18H15P)]·C4H10OZ = 2
Mr = 873.76F000 = 904
Triclinic, P1Dx = 1.380 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 11.7387 (12) ÅCell parameters from 16922 reflections
b = 13.0535 (13) Åθ = 2.4–22.8º
c = 14.7187 (15) ŵ = 0.46 mm1
α = 70.445 (2)ºT = 200 (2) K
β = 81.716 (2)ºPrism, red
γ = 88.040 (3)º0.19 × 0.07 × 0.02 mm
V = 2102.9 (4) Å3

Data collection

Nonius KappaCCD diffractometer7382 independent reflections
Radiation source: fine-focus sealed tube4895 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.061
T = 200(2) Kθmax = 25.0º
CCD rotation images, thick slices scansθmin = 1.5º
Absorption correction: multi-scan(Blessing, 1995)h = −10→13
Tmin = 0.918, Tmax = 0.989k = −13→15
16858 measured reflectionsl = −16→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.113  w = 1/[σ2(Fo2) + (0.0454P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
7382 reflectionsΔρmax = 1.75 e Å3
523 parametersΔρmin = −0.56 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
B10.8157 (5)0.8932 (4)0.7251 (4)0.0386 (15)
H1'0.81250.96410.73760.046*
C10.8247 (4)0.8636 (4)0.4879 (3)0.0354 (12)
H10.82850.82130.44620.043*
C20.8292 (4)0.9767 (4)0.4569 (4)0.0424 (13)
H20.83591.02540.39180.051*
C30.8219 (4)1.0027 (4)0.5398 (4)0.0427 (13)
H30.82361.07430.54260.051*
C41.0523 (4)0.7072 (4)0.7588 (3)0.0367 (12)
H41.08860.64210.75540.044*
C51.1011 (4)0.7847 (4)0.7874 (3)0.0426 (13)
H51.17470.78340.80730.051*
C61.0193 (4)0.8638 (4)0.7806 (3)0.0405 (13)
H61.02700.92920.79420.049*
C70.6070 (4)0.6735 (4)0.8423 (3)0.0395 (13)
H70.57630.60320.85350.047*
C80.5601 (5)0.7450 (4)0.8884 (4)0.0517 (15)
H80.49380.73360.93630.062*
C90.6287 (5)0.8348 (4)0.8508 (4)0.0464 (14)
H90.61890.89900.86770.056*
C100.8495 (4)0.4452 (3)0.8627 (3)0.0290 (11)
C110.8971 (4)0.3351 (3)0.8753 (3)0.0315 (11)
C120.8898 (4)0.2849 (4)0.8067 (4)0.0390 (12)
H120.85050.32030.75270.047*
C130.9382 (5)0.1845 (4)0.8150 (4)0.0497 (14)
H130.93170.15160.76730.060*
C140.9959 (5)0.1326 (4)0.8926 (4)0.0495 (15)
H141.02970.06390.89860.059*
C151.0041 (4)0.1810 (4)0.9615 (4)0.0470 (14)
H151.04420.14531.01480.056*
C160.9548 (4)0.2809 (4)0.9540 (3)0.0374 (12)
H160.96030.31261.00270.045*
C170.8004 (4)0.4727 (3)0.9494 (3)0.0298 (11)
C180.7310 (4)0.3970 (4)1.0255 (3)0.0362 (12)
H180.71540.32801.02110.043*
C190.6847 (4)0.4219 (4)1.1073 (4)0.0461 (14)
H190.63730.36981.15850.055*
C200.7062 (4)0.5207 (4)1.1154 (4)0.0475 (14)
H200.67370.53741.17160.057*
C210.7757 (5)0.5958 (4)1.0410 (4)0.0484 (14)
H210.79130.66451.04610.058*
C220.8228 (4)0.5716 (4)0.9591 (3)0.0417 (13)
H220.87120.62360.90870.050*
C230.5401 (4)0.6507 (3)0.6241 (3)0.0265 (10)
C240.5229 (4)0.7597 (4)0.6139 (3)0.0334 (11)
H240.58530.80360.61490.040*
C250.4153 (4)0.8042 (4)0.6023 (3)0.0389 (12)
H250.40460.87920.59330.047*
C260.3236 (4)0.7410 (4)0.6035 (3)0.0371 (12)
H260.24970.77220.59580.045*
C270.3386 (4)0.6325 (4)0.6157 (3)0.0352 (12)
H270.27520.58840.61720.042*
C280.4466 (4)0.5878 (3)0.6259 (3)0.0313 (11)
H280.45680.51290.63430.038*
C290.7223 (4)0.6166 (3)0.4899 (3)0.0281 (11)
C300.6531 (4)0.6761 (3)0.4225 (3)0.0352 (12)
H300.58150.70240.44430.042*
C310.6870 (5)0.6977 (4)0.3238 (3)0.0422 (13)
H310.63880.73890.27830.051*
C320.7903 (5)0.6598 (4)0.2913 (4)0.0428 (13)
H320.81440.67620.22350.051*
C330.8588 (4)0.5977 (4)0.3579 (4)0.0377 (12)
H330.92870.56890.33590.045*
C340.8257 (4)0.5776 (3)0.4555 (3)0.0299 (11)
H340.87420.53640.50060.036*
C350.6572 (4)0.4502 (3)0.6762 (3)0.0253 (10)
C360.6827 (4)0.3772 (3)0.6266 (3)0.0337 (12)
H360.71740.40260.56050.040*
C370.6578 (4)0.2664 (4)0.6728 (4)0.0381 (12)
H370.67740.21700.63830.046*
C380.6057 (4)0.2287 (4)0.7670 (4)0.0401 (13)
H380.58690.15360.79760.048*
C390.5806 (4)0.3003 (4)0.8176 (3)0.0400 (13)
H390.54480.27430.88340.048*
C400.6073 (4)0.4101 (4)0.7731 (3)0.0360 (12)
H400.59120.45840.80920.043*
C410.3203 (7)0.0075 (7)0.9844 (5)0.120 (3)
H41A0.2559−0.02111.03650.180*
H41B0.32280.08700.96480.180*
H41C0.3926−0.02181.00780.180*
C420.3049 (6)−0.0244 (6)0.9012 (5)0.092 (2)
H42A0.3008−0.10470.92120.110*
H42B0.23150.00470.87790.110*
C430.3815 (7)−0.0031 (5)0.7392 (5)0.088 (2)
H43A0.30980.03160.71640.105*
H43B0.3744−0.08220.75180.105*
C440.4811 (6)0.0426 (5)0.6632 (5)0.086 (2)
H44A0.46990.02980.60310.128*
H44B0.55170.00730.68560.128*
H44C0.48740.12100.65050.128*
N10.8145 (3)0.8235 (3)0.5848 (3)0.0284 (9)
N20.8118 (3)0.9105 (3)0.6168 (3)0.0306 (9)
N30.9472 (3)0.7371 (3)0.7369 (2)0.0291 (9)
N40.9270 (3)0.8335 (3)0.7515 (3)0.0327 (9)
N50.7002 (3)0.7161 (3)0.7804 (3)0.0299 (9)
N60.7130 (3)0.8180 (3)0.7856 (3)0.0338 (9)
N70.8548 (3)0.5152 (3)0.7752 (3)0.0303 (9)
H7A0.88890.48110.73650.036*
N80.9577 (3)0.6233 (3)0.5978 (3)0.0336 (10)
N91.0225 (3)0.6845 (3)0.5335 (3)0.0347 (10)
N101.0865 (4)0.7402 (3)0.4696 (4)0.0632 (15)
O10.3970 (3)0.0154 (3)0.8253 (3)0.0591 (10)
P10.68709 (10)0.59726 (9)0.62088 (8)0.0255 (3)
Ru10.82112 (3)0.66797 (3)0.68486 (3)0.02500 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
B10.045 (4)0.035 (3)0.041 (4)0.000 (3)−0.006 (3)−0.019 (3)
C10.045 (3)0.033 (3)0.025 (3)−0.002 (2)−0.004 (2)−0.006 (2)
C20.056 (4)0.030 (3)0.030 (3)−0.003 (2)−0.005 (3)0.004 (2)
C30.050 (3)0.023 (3)0.050 (4)0.000 (2)−0.010 (3)−0.003 (2)
C40.032 (3)0.041 (3)0.026 (3)0.000 (2)0.000 (2)0.000 (2)
C50.032 (3)0.061 (3)0.031 (3)−0.011 (3)−0.006 (2)−0.010 (3)
C60.041 (3)0.050 (3)0.030 (3)−0.018 (3)−0.002 (2)−0.013 (3)
C70.033 (3)0.054 (3)0.033 (3)−0.011 (3)0.004 (2)−0.018 (3)
C80.040 (3)0.072 (4)0.052 (4)−0.004 (3)0.008 (3)−0.040 (3)
C90.046 (3)0.054 (3)0.054 (4)0.004 (3)−0.003 (3)−0.040 (3)
C100.023 (3)0.032 (3)0.028 (3)−0.002 (2)−0.005 (2)−0.004 (2)
C110.026 (3)0.030 (3)0.034 (3)−0.003 (2)−0.002 (2)−0.005 (2)
C120.040 (3)0.034 (3)0.039 (3)0.001 (2)−0.010 (3)−0.007 (2)
C130.062 (4)0.031 (3)0.057 (4)−0.001 (3)−0.005 (3)−0.017 (3)
C140.053 (4)0.032 (3)0.055 (4)0.008 (3)−0.004 (3)−0.007 (3)
C150.048 (3)0.043 (3)0.038 (3)0.010 (3)−0.007 (3)0.003 (3)
C160.041 (3)0.038 (3)0.028 (3)0.005 (2)−0.006 (2)−0.004 (2)
C170.029 (3)0.033 (3)0.024 (3)−0.002 (2)−0.006 (2)−0.003 (2)
C180.031 (3)0.036 (3)0.037 (3)−0.002 (2)−0.003 (2)−0.007 (2)
C190.039 (3)0.052 (3)0.038 (3)−0.006 (3)0.007 (3)−0.007 (3)
C200.045 (3)0.065 (4)0.034 (3)0.002 (3)0.000 (3)−0.020 (3)
C210.062 (4)0.047 (3)0.038 (3)−0.013 (3)0.000 (3)−0.018 (3)
C220.049 (3)0.041 (3)0.031 (3)−0.013 (3)−0.002 (3)−0.005 (2)
C230.030 (3)0.031 (2)0.017 (2)0.002 (2)−0.001 (2)−0.008 (2)
C240.034 (3)0.037 (3)0.034 (3)−0.002 (2)−0.004 (2)−0.016 (2)
C250.044 (3)0.034 (3)0.039 (3)0.013 (2)−0.009 (3)−0.012 (2)
C260.029 (3)0.048 (3)0.033 (3)0.007 (2)−0.003 (2)−0.014 (3)
C270.030 (3)0.045 (3)0.032 (3)−0.004 (2)0.000 (2)−0.017 (2)
C280.036 (3)0.028 (2)0.026 (3)0.000 (2)0.000 (2)−0.007 (2)
C290.037 (3)0.020 (2)0.025 (3)−0.004 (2)0.001 (2)−0.007 (2)
C300.038 (3)0.034 (3)0.032 (3)0.000 (2)−0.005 (2)−0.009 (2)
C310.053 (4)0.043 (3)0.027 (3)0.001 (3)−0.009 (3)−0.006 (2)
C320.057 (4)0.045 (3)0.023 (3)−0.010 (3)0.008 (3)−0.011 (2)
C330.038 (3)0.038 (3)0.036 (3)−0.002 (2)0.009 (3)−0.016 (2)
C340.033 (3)0.032 (3)0.025 (3)−0.002 (2)−0.005 (2)−0.010 (2)
C350.025 (2)0.024 (2)0.028 (3)0.0003 (19)−0.004 (2)−0.011 (2)
C360.039 (3)0.028 (3)0.028 (3)−0.004 (2)0.000 (2)−0.004 (2)
C370.046 (3)0.030 (3)0.042 (3)−0.003 (2)−0.005 (3)−0.019 (2)
C380.051 (3)0.024 (3)0.043 (3)−0.005 (2)−0.008 (3)−0.007 (2)
C390.052 (3)0.038 (3)0.022 (3)−0.009 (3)0.001 (2)−0.003 (2)
C400.046 (3)0.032 (3)0.028 (3)−0.004 (2)0.002 (2)−0.010 (2)
C410.107 (7)0.195 (9)0.076 (6)−0.029 (6)0.016 (5)−0.079 (6)
C420.066 (5)0.120 (6)0.096 (6)−0.022 (4)0.010 (4)−0.052 (5)
C430.117 (6)0.081 (5)0.077 (5)−0.035 (4)−0.011 (5)−0.040 (4)
C440.135 (7)0.058 (4)0.061 (5)−0.026 (4)−0.006 (5)−0.017 (3)
N10.030 (2)0.024 (2)0.030 (2)0.0015 (17)−0.0039 (18)−0.0082 (18)
N20.038 (2)0.022 (2)0.032 (2)−0.0003 (17)−0.0050 (19)−0.0090 (18)
N30.028 (2)0.032 (2)0.023 (2)−0.0001 (18)−0.0013 (18)−0.0033 (18)
N40.040 (2)0.029 (2)0.030 (2)−0.0026 (19)−0.0062 (19)−0.0100 (18)
N50.028 (2)0.036 (2)0.029 (2)0.0026 (18)−0.0040 (18)−0.0154 (19)
N60.034 (2)0.036 (2)0.037 (2)0.0011 (19)−0.003 (2)−0.021 (2)
N70.031 (2)0.030 (2)0.029 (2)−0.0027 (17)−0.0010 (18)−0.0105 (19)
N80.035 (2)0.028 (2)0.031 (2)0.0002 (19)0.008 (2)−0.0052 (19)
N90.030 (2)0.036 (2)0.044 (3)0.006 (2)−0.007 (2)−0.021 (2)
N100.051 (3)0.050 (3)0.074 (4)−0.013 (2)0.029 (3)−0.014 (3)
O10.061 (3)0.061 (2)0.062 (3)0.004 (2)−0.009 (2)−0.030 (2)
P10.0300 (7)0.0231 (6)0.0225 (7)0.0018 (5)−0.0013 (5)−0.0075 (5)
Ru10.0269 (2)0.0245 (2)0.0208 (2)0.00069 (15)−0.00016 (16)−0.00537 (16)

Geometric parameters (Å, °)

B1—N41.529 (7)C25—H250.9500
B1—N21.541 (6)C26—C271.374 (6)
B1—N61.548 (6)C26—H260.9500
B1—H1'1.0000C27—C281.384 (6)
C1—N11.333 (5)C27—H270.9500
C1—C21.392 (6)C28—H280.9500
C1—H10.9500C29—C301.386 (6)
C2—C31.362 (6)C29—C341.393 (6)
C2—H20.9500C29—P11.845 (4)
C3—N21.344 (5)C30—C311.384 (6)
C3—H30.9500C30—H300.9500
C4—N31.333 (5)C31—C321.377 (7)
C4—C51.386 (6)C31—H310.9500
C4—H40.9500C32—C331.384 (7)
C5—C61.374 (6)C32—H320.9500
C5—H50.9500C33—C341.371 (6)
C6—N41.337 (5)C33—H330.9500
C6—H60.9500C34—H340.9500
C7—N51.323 (5)C35—C361.384 (6)
C7—C81.385 (6)C35—C401.390 (6)
C7—H70.9500C35—P11.840 (4)
C8—C91.353 (7)C36—C371.398 (6)
C8—H80.9500C36—H360.9500
C9—N61.342 (5)C37—C381.363 (6)
C9—H90.9500C37—H370.9500
C10—N71.299 (5)C38—C391.378 (6)
C10—C171.473 (6)C38—H380.9500
C10—C111.487 (6)C39—C401.387 (6)
C11—C121.389 (6)C39—H390.9500
C11—C161.395 (6)C40—H400.9500
C12—C131.384 (6)C41—C421.454 (8)
C12—H120.9500C41—H41A0.9800
C13—C141.376 (7)C41—H41B0.9800
C13—H130.9500C41—H41C0.9800
C14—C151.378 (7)C42—O11.411 (7)
C14—H140.9500C42—H42A0.9900
C15—C161.385 (6)C42—H42B0.9900
C15—H150.9500C43—O11.405 (7)
C16—H160.9500C43—C441.483 (8)
C17—C221.383 (6)C43—H43A0.9900
C17—C181.395 (6)C43—H43B0.9900
C18—C191.382 (6)C44—H44A0.9800
C18—H180.9500C44—H44B0.9800
C19—C201.369 (7)C44—H44C0.9800
C19—H190.9500N1—N21.366 (4)
C20—C211.380 (7)N1—Ru12.077 (3)
C20—H200.9500N3—N41.354 (5)
C21—C221.382 (6)N3—Ru12.114 (4)
C21—H210.9500N5—N61.372 (5)
C22—H220.9500N5—Ru12.084 (4)
C23—C281.384 (6)N7—Ru12.056 (3)
C23—C241.389 (6)N7—H7A0.8800
C23—P11.840 (4)N8—N91.200 (5)
C24—C251.382 (6)N8—Ru12.097 (4)
C24—H240.9500N9—N101.164 (5)
C25—C261.373 (6)P1—Ru12.3070 (13)
N4—B1—N2107.3 (4)C30—C31—H31119.9
N4—B1—N6108.1 (4)C31—C32—C33119.7 (5)
N2—B1—N6107.8 (4)C31—C32—H32120.1
N4—B1—H1'111.1C33—C32—H32120.1
N2—B1—H1'111.1C34—C33—C32120.0 (5)
N6—B1—H1'111.1C34—C33—H33120.0
N1—C1—C2110.0 (4)C32—C33—H33120.0
N1—C1—H1125.0C33—C34—C29121.2 (4)
C2—C1—H1125.0C33—C34—H34119.4
C3—C2—C1105.3 (4)C29—C34—H34119.4
C3—C2—H2127.3C36—C35—C40118.1 (4)
C1—C2—H2127.3C36—C35—P1123.5 (3)
N2—C3—C2108.8 (4)C40—C35—P1118.4 (3)
N2—C3—H3125.6C35—C36—C37120.7 (4)
C2—C3—H3125.6C35—C36—H36119.7
N3—C4—C5110.2 (5)C37—C36—H36119.7
N3—C4—H4124.9C38—C37—C36120.5 (4)
C5—C4—H4124.9C38—C37—H37119.7
C6—C5—C4104.7 (4)C36—C37—H37119.7
C6—C5—H5127.6C37—C38—C39119.5 (4)
C4—C5—H5127.6C37—C38—H38120.3
N4—C6—C5108.7 (4)C39—C38—H38120.3
N4—C6—H6125.6C38—C39—C40120.5 (4)
C5—C6—H6125.6C38—C39—H39119.8
N5—C7—C8111.0 (5)C40—C39—H39119.8
N5—C7—H7124.5C39—C40—C35120.7 (4)
C8—C7—H7124.5C39—C40—H40119.6
C9—C8—C7105.3 (5)C35—C40—H40119.6
C9—C8—H8127.4C42—C41—H41A109.5
C7—C8—H8127.4C42—C41—H41B109.5
N6—C9—C8108.7 (4)H41A—C41—H41B109.5
N6—C9—H9125.7C42—C41—H41C109.5
C8—C9—H9125.7H41A—C41—H41C109.5
N7—C10—C17122.0 (4)H41B—C41—H41C109.5
N7—C10—C11118.8 (4)O1—C42—C41110.5 (6)
C17—C10—C11119.2 (4)O1—C42—H42A109.6
C12—C11—C16117.9 (4)C41—C42—H42A109.6
C12—C11—C10120.9 (4)O1—C42—H42B109.6
C16—C11—C10121.2 (4)C41—C42—H42B109.6
C13—C12—C11121.7 (5)H42A—C42—H42B108.1
C13—C12—H12119.2O1—C43—C44109.7 (6)
C11—C12—H12119.2O1—C43—H43A109.7
C14—C13—C12119.7 (5)C44—C43—H43A109.7
C14—C13—H13120.1O1—C43—H43B109.7
C12—C13—H13120.1C44—C43—H43B109.7
C13—C14—C15119.5 (5)H43A—C43—H43B108.2
C13—C14—H14120.2C43—C44—H44A109.5
C15—C14—H14120.2C43—C44—H44B109.5
C14—C15—C16121.0 (5)H44A—C44—H44B109.5
C14—C15—H15119.5C43—C44—H44C109.5
C16—C15—H15119.5H44A—C44—H44C109.5
C15—C16—C11120.2 (5)H44B—C44—H44C109.5
C15—C16—H16119.9C1—N1—N2106.6 (3)
C11—C16—H16119.9C1—N1—Ru1134.0 (3)
C22—C17—C18118.2 (4)N2—N1—Ru1118.9 (3)
C22—C17—C10121.9 (4)C3—N2—N1109.2 (4)
C18—C17—C10119.9 (4)C3—N2—B1129.8 (4)
C19—C18—C17120.4 (4)N1—N2—B1120.3 (4)
C19—C18—H18119.8C4—N3—N4106.8 (4)
C17—C18—H18119.8C4—N3—Ru1133.6 (3)
C20—C19—C18120.9 (5)N4—N3—Ru1119.6 (3)
C20—C19—H19119.6C6—N4—N3109.5 (4)
C18—C19—H19119.6C6—N4—B1131.0 (4)
C19—C20—C21119.3 (5)N3—N4—B1119.2 (4)
C19—C20—H20120.3C7—N5—N6105.6 (4)
C21—C20—H20120.3C7—N5—Ru1136.8 (3)
C20—C21—C22120.3 (5)N6—N5—Ru1117.6 (3)
C20—C21—H21119.9C9—N6—N5109.5 (4)
C22—C21—H21119.9C9—N6—B1129.2 (4)
C21—C22—C17121.0 (4)N5—N6—B1121.3 (4)
C21—C22—H22119.5C10—N7—Ru1149.3 (3)
C17—C22—H22119.5C10—N7—H7A105.4
C28—C23—C24118.6 (4)Ru1—N7—H7A105.4
C28—C23—P1121.3 (3)N9—N8—Ru1125.9 (3)
C24—C23—P1119.7 (3)N10—N9—N8176.9 (5)
C25—C24—C23120.1 (4)C43—O1—C42113.3 (5)
C25—C24—H24120.0C23—P1—C35100.84 (19)
C23—C24—H24120.0C23—P1—C29100.2 (2)
C26—C25—C24120.6 (4)C35—P1—C29103.21 (19)
C26—C25—H25119.7C23—P1—Ru1118.60 (15)
C24—C25—H25119.7C35—P1—Ru1116.39 (14)
C25—C26—C27119.9 (5)C29—P1—Ru1115.06 (14)
C25—C26—H26120.0N7—Ru1—N1170.95 (14)
C27—C26—H26120.0N7—Ru1—N599.27 (14)
C26—C27—C28119.7 (5)N1—Ru1—N588.06 (14)
C26—C27—H27120.1N7—Ru1—N879.20 (14)
C28—C27—H27120.1N1—Ru1—N892.89 (14)
C23—C28—C27121.0 (4)N5—Ru1—N8173.15 (15)
C23—C28—H28119.5N7—Ru1—N390.87 (14)
C27—C28—H28119.5N1—Ru1—N384.22 (14)
C30—C29—C34118.1 (4)N5—Ru1—N386.64 (14)
C30—C29—P1122.1 (4)N8—Ru1—N386.71 (15)
C34—C29—P1119.6 (3)N7—Ru1—P190.93 (10)
C31—C30—C29120.8 (5)N1—Ru1—P193.73 (10)
C31—C30—H30119.6N5—Ru1—P194.99 (10)
C29—C30—H30119.6N8—Ru1—P191.71 (11)
C32—C31—C30120.1 (5)N3—Ru1—P1177.35 (10)
C32—C31—H31119.9

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2120).

References

  • Agrell, I. (1971). Acta Chem Scand 25, 2965–2974.
  • Alcock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg Chem 31, 2906–2908.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Burrows, A. D. (2001). CrystEngComm, 46, 1–5.
  • Dori, Z. & Ziolo, R. F. (1973). Chem Rev 73, 247–254.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 16, 3998–4004.
  • Huynh, M. H. V., Meyer, T. J., Labouriau, A., Morris, D. E. & White, P. S. (2003). J Am Chem Soc 125, 2828–2829. [PubMed]
  • Meyer, K., Bendix, J., Metzler-Nolte, N., Weyhermüller, T. & Wieghardt, K. (1998). J Am Chem Soc 120, 7260–7270.
  • Moloy, K. G. & Petersen, J. L. (1995). J Am Chem Soc 117, 7696–7710.
  • Nonius (1999). COLLECT Nonius B. V, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Pavlik, S., Mereiter, K., Puchberger, M. & &Kirchner, K. (2005). Organometallics, 24, 3561–3575.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827–831.
  • Slugovc, C., Sapunov, V. N., Wiede, P., Mereiter, K., Schmid, R. & Kirchner, K. (1997). J Chem Soc Dalton Trans pp. 4209–4216.
  • Trofimenko, S. (1993). Chem Rev 93, 943-980.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography