PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1498.
Published online 2008 November 8. doi:  10.1107/S1600536808035174
PMCID: PMC2960092

Triaqua­(2,2′-bipyridine-κ2 N,N′)(5-nitro­isophthalato-κO 1)zinc(II) monohydrate

Abstract

In the title compound, [Zn(C8H3NO6)(C10H8N2)(H2O)3]·H2O, the ZnII cation is hexa­coordinated by a chelating 2,2′-bipyridine ligand, one carboxyl­ate O atom from a 5-nitro­isophthalate dianion and three water mol­ecules in a slightly distorted octa­hedral geometry. The structure contains isolated neutral complexes, in contrast to coordination polymers formed by MnII, CoII and CuII with the same ligand set. An extensive network of hydrogen bonds is formed between the water mol­ecules and the carboxyl­ate groups.

Related literature

For related coordination polymers formed with the same ligand set and MnII, CoII or CuII, see: Xiao et al. (2005 [triangle]); Xie et al. (2005 [triangle], 2006 [triangle]). For other examples of transition-metal complexes containing benzene carboxyl­ates and pyridine-based ligands, see: Kim et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1498-scheme1.jpg

Experimental

Crystal data

  • [Zn(C8H3NO6)(C10H8N2)(H2O)3]·H2O
  • M r = 502.73
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1498-efi1.jpg
  • a = 7.5200 (10) Å
  • b = 10.6700 (15) Å
  • c = 12.8300 (15) Å
  • α = 90.024 (10)°
  • β = 87.670 (10)°
  • γ = 74.720 (10)°
  • V = 992.2 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.30 mm−1
  • T = 293 (2) K
  • 0.32 × 0.28 × 0.22 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.592, T max = 0.747
  • 5594 measured reflections
  • 3801 independent reflections
  • 3240 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.147
  • S = 1.06
  • 3801 reflections
  • 289 parameters
  • H-atom parameters constrained
  • Δρmax = 1.13 e Å−3
  • Δρmin = −0.72 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808035174/bi2306sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035174/bi2306Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work is supported by the Natural Science Foundation of Shandong Province (grant No. Y2007D39).

supplementary crystallographic information

Comment

In recent years, carboxylic acids have been widely used in materials science as polydentate ligands which can coordinate to transition-metal or rare-earth cations to yield complexes with interesting or useful properties. For example, Kim et al. (2001) have focused on the syntheses of transition-metal complexes containing benzene carboxylate and rigid aromatic pyridine ligands in order to study their electronic conductivity and magnetic properties. The importance of transition-metal dicarboxylate complexes motivated us to pursue synthetic strategies for these compounds, using 5-nitroisophthalic acid as a polydentate ligand.

Experimental

A mixture of zinc dichloride (0.5 mmol), 2,2'-bipyridine (0.5 mmol), and 5-nitroisophthalic acid (0.5 mmol) in H2O (8 ml) and ethanol (8 ml) was sealed in a 25 ml Teflon-lined stainless steel autoclave and kept at 413 K for three days. Colourless crystals were obtained after cooling to room temperature with a yield of 27%. Elemental analysis calculated: C 42.97, H 3.78, N 9.55%; found: C 42.86, H 3.76, N 9.51%.

Refinement

The H atoms of the water molecule were located from difference density maps. The O—H bonds were normalised to 0.84 Å, and the H atoms were then allowed to ride on the parent O atom with Uiso(H) = 1.5Ueq(O). All other H atoms were placed in calculated positions with a C—H bond distance of 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular structure of the title compound showing displacement ellipsoids at 50% probability for non-H atoms.

Crystal data

[Zn(C8H3NO6)(C10H8N2)(H2O)3]·H2OZ = 2
Mr = 502.73F000 = 516
Triclinic, P1Dx = 1.683 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.5200 (10) ÅCell parameters from 3801 reflections
b = 10.6700 (15) Åθ = 1.6–26.0º
c = 12.8300 (15) ŵ = 1.30 mm1
α = 90.024 (10)ºT = 293 (2) K
β = 87.670 (10)ºBlock, colorless
γ = 74.720 (10)º0.32 × 0.28 × 0.22 mm
V = 992.2 (2) Å3

Data collection

Bruker APEXII CCD diffractometer3801 independent reflections
Radiation source: fine-focus sealed tube3240 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.016
T = 293(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −9→9
Tmin = 0.592, Tmax = 0.747k = −13→13
5594 measured reflectionsl = 0→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.147  w = 1/[σ2(Fo2) + (0.0817P)2 + 1.7563P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3801 reflectionsΔρmax = 1.13 e Å3
289 parametersΔρmin = −0.72 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.72904 (6)0.47118 (4)0.78573 (3)0.02670 (18)
C10.5256 (5)1.0550 (3)0.6738 (3)0.0200 (7)
C20.4383 (5)1.1472 (3)0.7462 (3)0.0204 (7)
H2A0.41661.23510.73140.024*
C30.3825 (5)1.1075 (3)0.8421 (3)0.0185 (7)
C40.2892 (5)1.2039 (3)0.9251 (3)0.0192 (7)
C50.4090 (5)0.9779 (3)0.8610 (3)0.0206 (7)
H5A0.36750.95130.92430.025*
C60.4968 (5)0.8863 (3)0.7869 (3)0.0212 (7)
C70.5604 (5)0.9247 (3)0.6925 (3)0.0230 (7)
H7A0.62480.86370.64330.028*
C80.5179 (5)0.7461 (3)0.8070 (3)0.0258 (8)
C90.7336 (6)0.5092 (4)0.5475 (3)0.0323 (9)
H9A0.66300.59320.56300.039*
C100.7887 (7)0.4771 (5)0.4446 (3)0.0434 (11)
H10A0.75300.53680.39170.052*
C110.8961 (8)0.3562 (5)0.4235 (3)0.0491 (13)
H11A0.93830.33210.35540.059*
C120.9428 (7)0.2692 (4)0.5027 (3)0.0396 (11)
H12A1.01830.18610.48900.048*
C130.8759 (5)0.3064 (3)0.6038 (3)0.0216 (7)
C140.9011 (5)0.2164 (3)0.6926 (3)0.0190 (7)
C150.9850 (5)0.0861 (4)0.6817 (3)0.0279 (8)
H15A1.04290.05160.61870.033*
C160.9811 (6)0.0076 (4)0.7667 (4)0.0355 (10)
H16A1.0358−0.08120.76110.043*
C170.8971 (6)0.0598 (4)0.8594 (3)0.0326 (9)
H17A0.89080.00710.91650.039*
C180.8232 (5)0.1903 (4)0.8660 (3)0.0267 (8)
H18A0.77000.22670.92950.032*
N10.5836 (5)1.0974 (3)0.5725 (2)0.0275 (7)
N20.7767 (4)0.4257 (3)0.6256 (2)0.0215 (6)
N30.8239 (4)0.2684 (3)0.7848 (2)0.0192 (6)
O10.6969 (4)1.0197 (3)0.5172 (2)0.0373 (7)
O20.5184 (5)1.2084 (3)0.5476 (2)0.0445 (8)
O30.2776 (4)1.3214 (2)0.9070 (2)0.0255 (6)
O40.2275 (4)1.1635 (3)1.0056 (2)0.0337 (7)
O50.3987 (5)0.7173 (3)0.8669 (3)0.0524 (10)
O60.6527 (4)0.6677 (2)0.7630 (2)0.0254 (6)
O71.0013 (4)0.4817 (3)0.7943 (2)0.0272 (6)
H1W1.00420.55490.81720.041*
H2W1.06980.42720.83250.041*
O80.4497 (4)0.4721 (2)0.7915 (2)0.0273 (6)
H3W0.39890.54510.81860.041*
H4W0.40610.41970.82640.041*
O90.7038 (4)0.4909 (3)0.9526 (2)0.0347 (7)
H5W0.71880.55860.98020.052*
H6W0.67840.43970.99700.052*
O100.0498 (5)0.6904 (4)0.8813 (5)0.113 (3)
H7W0.15790.69860.87680.169*
H8W−0.03870.73700.91750.169*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0308 (3)0.0205 (3)0.0280 (3)−0.00584 (19)0.00216 (18)−0.00145 (17)
C10.0244 (18)0.0183 (17)0.0177 (16)−0.0059 (14)−0.0015 (14)−0.0002 (13)
C20.0244 (18)0.0132 (16)0.0245 (18)−0.0060 (13)−0.0034 (14)0.0019 (13)
C30.0185 (17)0.0152 (16)0.0220 (17)−0.0050 (13)0.0002 (13)−0.0002 (13)
C40.0197 (17)0.0125 (16)0.0241 (17)−0.0019 (13)−0.0012 (14)−0.0004 (13)
C50.0203 (17)0.0149 (16)0.0257 (18)−0.0037 (13)0.0036 (14)0.0015 (13)
C60.0199 (17)0.0101 (16)0.0322 (19)−0.0021 (13)0.0017 (14)0.0000 (14)
C70.0252 (18)0.0167 (17)0.0260 (18)−0.0039 (14)0.0017 (15)−0.0051 (14)
C80.0234 (19)0.0114 (16)0.042 (2)−0.0038 (14)0.0057 (16)−0.0009 (15)
C90.042 (2)0.025 (2)0.027 (2)−0.0042 (17)−0.0037 (17)0.0066 (16)
C100.068 (3)0.041 (3)0.023 (2)−0.016 (2)−0.006 (2)0.0102 (18)
C110.085 (4)0.046 (3)0.019 (2)−0.023 (3)0.010 (2)−0.0022 (19)
C120.060 (3)0.032 (2)0.024 (2)−0.010 (2)0.016 (2)−0.0078 (17)
C130.0265 (19)0.0175 (17)0.0211 (17)−0.0069 (14)0.0033 (14)−0.0011 (13)
C140.0215 (17)0.0160 (16)0.0197 (17)−0.0053 (13)−0.0003 (13)−0.0003 (13)
C150.031 (2)0.0176 (18)0.032 (2)−0.0019 (15)0.0039 (16)−0.0042 (15)
C160.040 (2)0.0165 (19)0.048 (3)−0.0037 (17)−0.006 (2)0.0033 (17)
C170.038 (2)0.027 (2)0.036 (2)−0.0121 (18)−0.0078 (18)0.0127 (17)
C180.035 (2)0.0255 (19)0.0212 (18)−0.0117 (16)0.0004 (15)0.0040 (15)
N10.0378 (19)0.0274 (17)0.0202 (15)−0.0138 (15)−0.0002 (14)−0.0003 (13)
N20.0273 (16)0.0189 (15)0.0186 (14)−0.0070 (12)−0.0002 (12)0.0019 (11)
N30.0244 (15)0.0128 (13)0.0200 (14)−0.0045 (11)−0.0006 (12)−0.0011 (11)
O10.0459 (18)0.0380 (17)0.0252 (14)−0.0082 (14)0.0138 (13)−0.0063 (12)
O20.075 (2)0.0262 (16)0.0294 (16)−0.0094 (15)0.0061 (15)0.0088 (12)
O30.0364 (15)0.0108 (12)0.0276 (13)−0.0042 (10)0.0049 (11)−0.0013 (10)
O40.0486 (18)0.0168 (13)0.0314 (15)−0.0041 (12)0.0177 (13)0.0001 (11)
O50.0441 (19)0.0160 (14)0.095 (3)−0.0102 (13)0.0398 (19)−0.0053 (15)
O60.0282 (14)0.0084 (11)0.0365 (15)−0.0011 (10)0.0110 (11)−0.0008 (10)
O70.0257 (14)0.0190 (13)0.0376 (15)−0.0061 (10)−0.0077 (11)0.0022 (11)
O80.0232 (13)0.0186 (13)0.0402 (15)−0.0065 (10)0.0059 (11)0.0013 (11)
O90.065 (2)0.0230 (14)0.0190 (13)−0.0171 (14)0.0029 (13)−0.0040 (10)
O100.036 (2)0.074 (3)0.229 (7)−0.025 (2)0.051 (3)−0.107 (4)

Geometric parameters (Å, °)

Zn1—O62.047 (2)C11—C121.370 (7)
Zn1—O72.087 (3)C11—H11A0.930
Zn1—N32.092 (3)C12—C131.391 (5)
Zn1—O82.096 (3)C12—H12A0.930
Zn1—N22.105 (3)C13—N21.318 (5)
Zn1—O92.148 (3)C13—C141.475 (5)
C1—C21.368 (5)C14—N31.349 (4)
C1—C71.369 (5)C14—C151.371 (5)
C1—N11.463 (5)C15—C161.380 (6)
C2—C31.386 (5)C15—H15A0.930
C2—H2A0.930C16—C171.370 (6)
C3—C51.367 (5)C16—H16A0.930
C3—C41.497 (5)C17—C181.357 (6)
C4—O41.240 (4)C17—H17A0.930
C4—O31.255 (4)C18—N31.335 (5)
C5—C61.380 (5)C18—H18A0.930
C5—H5A0.930N1—O21.204 (5)
C6—C71.385 (5)N1—O11.222 (4)
C6—C81.486 (5)O7—H1W0.840
C7—H7A0.930O7—H2W0.840
C8—O61.245 (4)O8—H3W0.840
C8—O51.256 (5)O8—H4W0.840
C9—N21.334 (5)O9—H5W0.840
C9—C101.382 (6)O9—H6W0.840
C9—H9A0.930O10—H7W0.840
C10—C111.350 (7)O10—H8W0.840
C10—H10A0.930
O6—Zn1—O788.46 (11)C10—C11—C12119.8 (4)
O6—Zn1—N3170.99 (11)C10—C11—H11A120.1
O7—Zn1—N389.04 (11)C12—C11—H11A120.1
O6—Zn1—O889.13 (10)C11—C12—C13119.3 (4)
O7—Zn1—O8174.03 (10)C11—C12—H12A120.4
N3—Zn1—O894.16 (11)C13—C12—H12A120.4
O6—Zn1—N294.11 (11)N2—C13—C12121.2 (4)
O7—Zn1—N289.58 (11)N2—C13—C14115.1 (3)
N3—Zn1—N277.22 (11)C12—C13—C14123.6 (3)
O8—Zn1—N296.04 (11)N3—C14—C15121.4 (3)
O6—Zn1—O993.40 (11)N3—C14—C13115.7 (3)
O7—Zn1—O987.99 (12)C15—C14—C13122.8 (3)
N3—Zn1—O995.16 (11)C14—C15—C16118.2 (4)
O8—Zn1—O986.70 (12)C14—C15—H15A120.9
N2—Zn1—O9172.05 (11)C16—C15—H15A120.9
C2—C1—C7122.4 (3)C17—C16—C15120.4 (4)
C2—C1—N1118.8 (3)C17—C16—H16A119.8
C7—C1—N1118.8 (3)C15—C16—H16A119.8
C1—C2—C3119.0 (3)C18—C17—C16118.4 (4)
C1—C2—H2A120.5C18—C17—H17A120.8
C3—C2—H2A120.5C16—C17—H17A120.8
C5—C3—C2119.6 (3)N3—C18—C17122.5 (4)
C5—C3—C4119.0 (3)N3—C18—H18A118.8
C2—C3—C4121.3 (3)C17—C18—H18A118.8
O4—C4—O3124.6 (3)O2—N1—O1122.8 (3)
O4—C4—C3118.5 (3)O2—N1—C1118.3 (3)
O3—C4—C3117.0 (3)O1—N1—C1118.9 (3)
C3—C5—C6120.6 (3)C13—N2—C9118.5 (3)
C3—C5—H5A119.7C13—N2—Zn1115.1 (2)
C6—C5—H5A119.7C9—N2—Zn1126.0 (3)
C5—C6—C7120.3 (3)C18—N3—C14119.1 (3)
C5—C6—C8119.9 (3)C18—N3—Zn1126.6 (2)
C7—C6—C8119.8 (3)C14—N3—Zn1114.2 (2)
C1—C7—C6118.0 (3)C8—O6—Zn1125.6 (2)
C1—C7—H7A121.0Zn1—O7—H1W110.4
C6—C7—H7A121.0Zn1—O7—H2W116.7
O6—C8—O5125.9 (3)H1W—O7—H2W105.6
O6—C8—C6117.0 (3)Zn1—O8—H3W102.2
O5—C8—C6117.1 (3)Zn1—O8—H4W124.1
N2—C9—C10123.2 (4)H3W—O8—H4W104.6
N2—C9—H9A118.4Zn1—O9—H5W118.6
C10—C9—H9A118.4Zn1—O9—H6W129.1
C11—C10—C9117.9 (4)H5W—O9—H6W112.3
C11—C10—H10A121.1H7W—O10—H8W126.1
C9—C10—H10A121.1
C7—C1—C2—C3−0.1 (5)C2—C1—N1—O1163.3 (3)
N1—C1—C2—C3179.8 (3)C7—C1—N1—O1−16.8 (5)
C1—C2—C3—C5−2.6 (5)C12—C13—N2—C93.2 (6)
C1—C2—C3—C4179.0 (3)C14—C13—N2—C9−173.9 (3)
C5—C3—C4—O4−4.9 (5)C12—C13—N2—Zn1−169.7 (3)
C2—C3—C4—O4173.6 (3)C14—C13—N2—Zn113.2 (4)
C5—C3—C4—O3175.8 (3)C10—C9—N2—C13−0.4 (6)
C2—C3—C4—O3−5.7 (5)C10—C9—N2—Zn1171.7 (3)
C2—C3—C5—C62.4 (5)O6—Zn1—N2—C13163.0 (3)
C4—C3—C5—C6−179.1 (3)O7—Zn1—N2—C1374.6 (3)
C3—C5—C6—C70.4 (6)N3—Zn1—N2—C13−14.5 (3)
C3—C5—C6—C8−177.6 (3)O8—Zn1—N2—C13−107.4 (3)
C2—C1—C7—C62.9 (5)O6—Zn1—N2—C9−9.2 (3)
N1—C1—C7—C6−177.0 (3)O7—Zn1—N2—C9−97.7 (3)
C5—C6—C7—C1−3.0 (5)N3—Zn1—N2—C9173.2 (3)
C8—C6—C7—C1175.0 (3)O8—Zn1—N2—C980.3 (3)
C5—C6—C8—O6−152.1 (4)C17—C18—N3—C14−0.1 (6)
C7—C6—C8—O629.9 (5)C17—C18—N3—Zn1−176.3 (3)
C5—C6—C8—O527.7 (6)C15—C14—N3—C18−2.6 (5)
C7—C6—C8—O5−150.3 (4)C13—C14—N3—C18172.7 (3)
N2—C9—C10—C11−2.1 (7)C15—C14—N3—Zn1174.0 (3)
C9—C10—C11—C121.6 (8)C13—C14—N3—Zn1−10.7 (4)
C10—C11—C12—C131.0 (8)O7—Zn1—N3—C1899.8 (3)
C11—C12—C13—N2−3.6 (7)O8—Zn1—N3—C18−75.2 (3)
C11—C12—C13—C14173.2 (4)N2—Zn1—N3—C18−170.4 (3)
N2—C13—C14—N3−1.7 (5)O9—Zn1—N3—C1811.9 (3)
C12—C13—C14—N3−178.7 (4)O7—Zn1—N3—C14−76.5 (2)
N2—C13—C14—C15173.5 (3)O8—Zn1—N3—C14108.5 (2)
C12—C13—C14—C15−3.5 (6)N2—Zn1—N3—C1413.3 (2)
N3—C14—C15—C163.0 (6)O9—Zn1—N3—C14−164.4 (2)
C13—C14—C15—C16−171.9 (4)O5—C8—O6—Zn1−5.3 (6)
C14—C15—C16—C17−0.7 (6)C6—C8—O6—Zn1174.5 (2)
C15—C16—C17—C18−1.9 (6)O7—Zn1—O6—C8−135.1 (3)
C16—C17—C18—N32.4 (6)O8—Zn1—O6—C839.5 (3)
C2—C1—N1—O2−16.1 (5)N2—Zn1—O6—C8135.5 (3)
C7—C1—N1—O2163.8 (4)O9—Zn1—O6—C8−47.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H2W···O3i0.841.962.776 (4)165
O7—H1W···O10ii0.841.782.607 (4)168
O8—H3W···O50.841.942.715 (4)153
O8—H4W···O3iii0.841.892.721 (4)172
O9—H5W···O3iv0.841.942.727 (4)156
O9—H6W···O5v0.842.573.414 (4)180
O10—H8W···O4vi0.841.792.631 (4)180
O10—H7W···O50.841.872.713 (5)180

Symmetry codes: (i) x+1, y−1, z; (ii) x+1, y, z; (iii) x, y−1, z; (iv) −x+1, −y+2, −z+2; (v) −x+1, −y+1, −z+2; (vi) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2306).

References

  • Bruker (2001). SADABS and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kim, Y., Lee, E. & Jung, D. Y. (2001). Chem. Mater.13, 2684–2690.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xiao, H. P., Li, X.-H. & Cheng, Y.-Q. (2005). Acta Cryst. E61, m158–m159.
  • Xie, G., Zeng, M.-H., Chen, S.-P. & Gao, S.-L. (2005). Acta Cryst. E61, m2273–m2275.
  • Xie, G., Zeng, M.-H., Chen, S.-P. & Gao, S.-L. (2006). Acta Cryst. E62, m397–m399.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography