PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2384.
Published online 2008 November 20. doi:  10.1107/S1600536808037471
PMCID: PMC2960084

Isopropyl 2-(5-iodo-3-methyl­sulfinyl-1-benzofuran-2-yl)acetate

Abstract

In the title compound, C14H15IO4S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. The crystal structure is stabilized by C—H(...)π inter­actions between a methyl H atom and the benzene ring of an adjacent mol­ecule, and by weak inter­molecular C—H(...)O hydrogen bonds.

Related literature

For the crystal structures of similar isopropyl 2-(3-methyl­sulfinyl-1-benzofuran-2-yl)acetate derivatives, see: Choi et al. (2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2384-scheme1.jpg

Experimental

Crystal data

  • C14H15IO4S
  • M r = 406.22
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2384-efi1.jpg
  • a = 8.0584 (7) Å
  • b = 10.1959 (9) Å
  • c = 10.8367 (9) Å
  • α = 70.369 (2)°
  • β = 81.926 (2)°
  • γ = 66.882 (1)°
  • V = 771.24 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.22 mm−1
  • T = 298 (2) K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999 [triangle]) T min = 0.595, T max = 0.806
  • 4396 measured reflections
  • 2965 independent reflections
  • 2639 reflections with I > 2σ(I)
  • R int = 0.011

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.079
  • S = 1.13
  • 2965 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.62 e Å−3
  • Δρmin = −0.57 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037471/bq2107sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037471/bq2107Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As a part of our ongoing studies of the synthesis and structure of isopropyl 2-(3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, we have recently described the crystal structures of isopropyl 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008a) and isopropyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl) acetate (Choi et al., 2008b). Here we report the crystal structure of the title compound, isopropyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl) acetate (Fig. 1). The benzofuran unit is essentially planar, with a mean deviation of 0.013 (2) Å from the least-squares plane defined by the nine constituent atoms. The molecular packing is stabilized by C—H···π interactions between a methyl H atom of isopropyl group and the benzene ring of the benzofuran unit, with a C13—H13C···Cgiii separation of 2.78 Å (Fig. 2 and Table 1; Cg is the centroid of the C2–C7 benzene ring, symmetry code as in Fig. 2). Also weak intermolecular C—H···O hydrogen bonds in the structure were observed (Table 1 & Fig. 2).

Experimental

77% 3-chloroperoxybenzoic acid (197 mg, 0.88 mmol) was added in small portions to a stirred solution of isopropyl 2-(5-iodo-3-methylsulfanyl-1-benzofuran-2-yl)acetate (321 mg, 0.8 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 80%, m.p. 420–421 K; Rf = 0.63 (hexane-ethyl acetate, 1;2 v/v)]. Single crystals suitable for X–ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 1.27 (d, J = 6.20 Hz, 6H), 3.07 (s, 3H), 4.0 (s, 2H), 5.01-5.07 (m, 1H), 7.29 (d, J = 8.80 Hz, 1H), 7.66 (d, J = 8.76 Hz, 1H), 8.29 (s, 1H); EI-MS 406 [M+].

Refinement

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å for the aryl, 0.97 Å for the methylene, 0.98 Å for the methine, and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl, methine and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
C—H···π and C—H···O interactions (dotted lines) in the title ompound. Cg denotes ring centroid. [Symmetry code: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) x, y-1, z+1.]

Crystal data

C14H15IO4SZ = 2
Mr = 406.22F000 = 400
Triclinic, P1Dx = 1.749 Mg m3
Hall symbol: -P 1Melting point = 420–421 K
a = 8.0584 (7) ÅMo Kα radiation λ = 0.71073 Å
b = 10.1959 (9) ÅCell parameters from 3094 reflections
c = 10.8367 (9) Åθ = 2.5–28.2º
α = 70.369 (2)ºµ = 2.22 mm1
β = 81.926 (2)ºT = 298 (2) K
γ = 66.882 (1)ºBlock, colorless
V = 771.24 (12) Å30.30 × 0.20 × 0.10 mm

Data collection

Bruker SMART CCD diffractometer2965 independent reflections
Radiation source: fine-focus sealed tube2639 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.011
Detector resolution: 10.0 pixels mm-1θmax = 26.0º
T = 298(2) Kθmin = 2.5º
[var phi] and ω scansh = −9→9
Absorption correction: multi-scan(SADABS; Sheldrick, 1999)k = −12→10
Tmin = 0.595, Tmax = 0.806l = −11→13
4396 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.079  w = 1/[σ2(Fo2) + (0.0351P)2 + 0.6769P] where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2965 reflectionsΔρmax = 0.62 e Å3
182 parametersΔρmin = −0.57 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I0.70596 (3)0.79850 (3)0.12855 (3)0.05948 (12)
S0.25632 (12)0.39419 (10)0.46216 (8)0.0450 (2)
O10.1637 (3)0.5266 (2)0.0838 (2)0.0396 (5)
O2−0.0175 (4)0.1492 (3)0.2759 (3)0.0541 (6)
O30.2647 (4)0.1371 (3)0.2867 (3)0.0668 (8)
O40.2538 (4)0.5137 (3)0.5137 (3)0.0601 (7)
C10.2512 (4)0.4675 (3)0.2898 (3)0.0362 (6)
C20.3469 (4)0.5580 (3)0.2042 (3)0.0349 (6)
C30.4715 (4)0.6148 (4)0.2202 (3)0.0398 (7)
H30.51640.59320.30220.048*
C40.5252 (4)0.7044 (3)0.1086 (3)0.0406 (7)
C50.4622 (5)0.7382 (4)−0.0162 (3)0.0430 (7)
H50.50300.7988−0.08840.052*
C60.3394 (5)0.6817 (4)−0.0328 (3)0.0413 (7)
H60.29550.7026−0.11490.050*
C70.2851 (4)0.5925 (3)0.0795 (3)0.0369 (7)
C80.1443 (4)0.4531 (3)0.2138 (3)0.0377 (7)
C90.0157 (5)0.3741 (4)0.2441 (4)0.0434 (7)
H9A−0.06620.41540.17120.052*
H9B−0.05560.39280.32070.052*
C100.1072 (5)0.2070 (4)0.2695 (3)0.0414 (7)
C110.0424 (6)−0.0125 (4)0.2990 (4)0.0661 (12)
H110.1531−0.06700.35060.079*
C12−0.1125 (10)−0.0567 (7)0.3724 (6)0.104 (2)
H12A−0.2185−0.00370.31910.125*
H12B−0.1363−0.03150.45260.125*
H12C−0.0805−0.16260.39190.125*
C130.0701 (9)−0.0397 (5)0.1698 (6)0.0926 (18)
H13A0.1579−0.00060.11950.111*
H13B−0.04200.00960.12350.111*
H13C0.1124−0.14540.18280.111*
C140.4840 (6)0.2608 (5)0.4771 (4)0.0647 (11)
H14A0.56570.31270.44430.097*
H14B0.49890.19470.42730.097*
H14C0.50920.20350.56750.097*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I0.05565 (17)0.05111 (16)0.0792 (2)−0.03419 (12)−0.00801 (12)−0.00920 (12)
S0.0496 (5)0.0512 (5)0.0385 (4)−0.0270 (4)−0.0031 (3)−0.0082 (4)
O10.0425 (12)0.0397 (12)0.0418 (12)−0.0179 (10)−0.0069 (9)−0.0131 (10)
O20.0601 (15)0.0406 (13)0.0698 (17)−0.0273 (12)−0.0179 (12)−0.0099 (12)
O30.0509 (16)0.0473 (15)0.100 (2)−0.0204 (13)−0.0092 (15)−0.0144 (15)
O40.0719 (18)0.0681 (18)0.0502 (15)−0.0283 (15)−0.0032 (13)−0.0264 (13)
C10.0400 (16)0.0352 (15)0.0373 (17)−0.0179 (13)−0.0038 (13)−0.0099 (13)
C20.0376 (15)0.0296 (14)0.0383 (17)−0.0123 (12)−0.0044 (12)−0.0100 (12)
C30.0412 (17)0.0383 (17)0.0438 (18)−0.0179 (14)−0.0052 (13)−0.0120 (14)
C40.0376 (16)0.0324 (16)0.055 (2)−0.0157 (13)−0.0010 (14)−0.0135 (14)
C50.0472 (18)0.0347 (16)0.0434 (19)−0.0159 (14)0.0017 (14)−0.0073 (14)
C60.0462 (18)0.0385 (17)0.0371 (17)−0.0140 (14)−0.0040 (13)−0.0097 (13)
C70.0394 (16)0.0315 (15)0.0435 (18)−0.0137 (13)−0.0045 (13)−0.0138 (13)
C80.0419 (16)0.0336 (15)0.0414 (17)−0.0155 (13)−0.0040 (13)−0.0128 (13)
C90.0439 (18)0.0441 (18)0.0512 (19)−0.0228 (15)−0.0039 (14)−0.0165 (15)
C100.050 (2)0.0435 (18)0.0382 (17)−0.0264 (16)−0.0039 (14)−0.0100 (14)
C110.085 (3)0.0381 (19)0.078 (3)−0.031 (2)−0.034 (2)0.0010 (19)
C120.178 (7)0.097 (4)0.080 (4)−0.099 (5)0.029 (4)−0.032 (3)
C130.116 (4)0.052 (3)0.104 (4)−0.032 (3)0.044 (3)−0.034 (3)
C140.061 (2)0.059 (2)0.060 (2)−0.012 (2)−0.0181 (19)−0.006 (2)

Geometric parameters (Å, °)

I—C42.101 (3)C6—C71.385 (5)
S—O41.494 (3)C6—H60.9300
S—C11.763 (3)C8—C91.488 (4)
S—C141.794 (4)C9—C101.509 (5)
O1—C71.375 (4)C9—H9A0.9700
O1—C81.375 (4)C9—H9B0.9700
O2—C101.335 (4)C11—C131.487 (7)
O2—C111.465 (4)C11—C121.521 (7)
O3—C101.192 (4)C11—H110.9800
C1—C81.350 (4)C12—H12A0.9600
C1—C21.445 (4)C12—H12B0.9600
C2—C71.390 (4)C12—H12C0.9600
C2—C31.395 (4)C13—H13A0.9600
C3—C41.380 (5)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.396 (5)C14—H14A0.9600
C5—C61.382 (5)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
O4—S—C1107.22 (15)C10—C9—H9A108.9
O4—S—C14106.49 (19)C8—C9—H9B108.9
C1—S—C1497.67 (18)C10—C9—H9B108.9
C7—O1—C8106.2 (2)H9A—C9—H9B107.7
C10—O2—C11118.3 (3)O3—C10—O2125.4 (3)
C8—C1—C2107.2 (3)O3—C10—C9125.4 (3)
C8—C1—S124.0 (2)O2—C10—C9109.1 (3)
C2—C1—S128.7 (2)O2—C11—C13108.2 (3)
C7—C2—C3119.4 (3)O2—C11—C12105.4 (4)
C7—C2—C1104.7 (3)C13—C11—C12109.8 (4)
C3—C2—C1135.9 (3)O2—C11—H11111.1
C4—C3—C2116.9 (3)C13—C11—H11111.1
C4—C3—H3121.6C12—C11—H11111.1
C2—C3—H3121.6C11—C12—H12A109.5
C3—C4—C5123.2 (3)C11—C12—H12B109.5
C3—C4—I118.3 (2)H12A—C12—H12B109.5
C5—C4—I118.5 (2)C11—C12—H12C109.5
C6—C5—C4120.2 (3)H12A—C12—H12C109.5
C6—C5—H5119.9H12B—C12—H12C109.5
C4—C5—H5119.9C11—C13—H13A109.5
C5—C6—C7116.4 (3)C11—C13—H13B109.5
C5—C6—H6121.8H13A—C13—H13B109.5
C7—C6—H6121.8C11—C13—H13C109.5
O1—C7—C6125.3 (3)H13A—C13—H13C109.5
O1—C7—C2110.7 (3)H13B—C13—H13C109.5
C6—C7—C2123.9 (3)S—C14—H14A109.5
C1—C8—O1111.1 (3)S—C14—H14B109.5
C1—C8—C9132.6 (3)H14A—C14—H14B109.5
O1—C8—C9116.3 (3)S—C14—H14C109.5
C8—C9—C10113.4 (3)H14A—C14—H14C109.5
C8—C9—H9A108.9H14B—C14—H14C109.5
O4—S—C1—C8−135.0 (3)C3—C2—C7—O1180.0 (3)
C14—S—C1—C8115.0 (3)C1—C2—C7—O1−1.5 (3)
O4—S—C1—C241.4 (3)C3—C2—C7—C6−0.2 (5)
C14—S—C1—C2−68.6 (3)C1—C2—C7—C6178.3 (3)
C8—C1—C2—C70.6 (3)C2—C1—C8—O10.6 (4)
S—C1—C2—C7−176.3 (2)S—C1—C8—O1177.6 (2)
C8—C1—C2—C3178.7 (4)C2—C1—C8—C9179.9 (3)
S—C1—C2—C31.9 (6)S—C1—C8—C9−3.1 (5)
C7—C2—C3—C40.5 (4)C7—O1—C8—C1−1.5 (3)
C1—C2—C3—C4−177.4 (3)C7—O1—C8—C9179.1 (3)
C2—C3—C4—C5−0.6 (5)C1—C8—C9—C10−78.0 (5)
C2—C3—C4—I177.9 (2)O1—C8—C9—C10101.3 (3)
C3—C4—C5—C60.3 (5)C11—O2—C10—O3−3.5 (5)
I—C4—C5—C6−178.2 (2)C11—O2—C10—C9179.5 (3)
C4—C5—C6—C70.1 (5)C8—C9—C10—O312.3 (5)
C8—O1—C7—C6−177.9 (3)C8—C9—C10—O2−170.7 (3)
C8—O1—C7—C21.8 (3)C10—O2—C11—C13−92.6 (4)
C5—C6—C7—O1179.7 (3)C10—O2—C11—C12150.0 (4)
C5—C6—C7—C2−0.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.932.573.451 (4)159
C9—H9B···O4ii0.972.413.373 (4)170
C13—H13C···Cgiii0.962.783.532 (5)136

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2107).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o2079. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2250. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Sheldrick, G. M. (1999). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography