PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2414–o2415.
Published online 2008 November 22. doi:  10.1107/S160053680803794X
PMCID: PMC2960081

Methyl 5,7-dihydr­oxy-2,2,9-trimethyl-6,11-dioxo-6,11-dihydro-2H-anthra[2,3-b]pyran-8-carboxyl­ate

Abstract

The title compound, C22H18O7, also known as laurentiquinone B, is a new anthraquinone which was isolated from Vismia laurentii, a Cameroonian medicinal plant. The asymmetric unit contains two independent mol­ecules. Each of them contains four fused rings, three of which are coplanar and typical of anthracene, while the heterocyclic rings adopt envelope conformations. Intra­molecular O—H(...)O hydrogen bonds result in the formation of two planar rings, which are also almost coplanar with the adjacent rings. In the crystal structure, inter­molecular O—H(...)O and C—H(...)O hydrogen bonds link the mol­ecules and a π–π contact is also present [centroid-centroid distance = 3.967 (3) Å].

Related literature

For the biosynthesis of anthraquinones, see: Birch et al. (1965 [triangle]); Shibata & Ikekawa (1963 [triangle]). For the bioactivity of anthraquinones, see: ; Adwankar & Chitnis (1982 [triangle]); Sittie et al. (1999 [triangle]); Rath et al. (1995 [triangle]); Ismail et al. (1997 [triangle]); Nagem & de Oliveira (1997 [triangle]); Nguemeving et al. (2006 [triangle]). For the pharmacology of Vismia laurentii, see: Kerharo (1974 [triangle]); Macfoy & Sama (1983 [triangle]). For other classes of natural products isolated from Vismia species, see: Simmonds et al. (1985 [triangle]); Nagem & de Oliveira (1997 [triangle]); Seo et al. (2000 [triangle]); Nguemeving et al. (2006 [triangle]). For related structures, see: Noungoue et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2414-scheme1.jpg

Experimental

Crystal data

  • C22H18O7
  • M r = 394.36
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2414-efi1.jpg
  • a = 6.9234 (4) Å
  • b = 16.0765 (9) Å
  • c = 17.5304 (9) Å
  • α = 108.746 (2)°
  • β = 98.725 (3)°
  • γ = 94.147 (2)°
  • V = 1810.97 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 173 (2) K
  • 0.30 × 0.20 × 0.15 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 17235 measured reflections
  • 8260 independent reflections
  • 4538 reflections with I > 2σ(I)
  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072
  • wR(F 2) = 0.171
  • S = 1.02
  • 8260 reflections
  • 547 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680803794X/hk2545sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803794X/hk2545Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the ‘Service de Coopération et d’Action Culturelle de l’Ambassade de France au Cameroun’ for a fellowship awarded to DNT at ULP Strasbourg and also J. Kister for his help to crystallize the compound.

supplementary crystallographic information

Comment

Anthraquinones are a class of natural products encompassing several hundreds of compounds. They are found in a large number of plant families particularly in Rubiaceae, Gesneriaceae, Polygonaceae, Guttiferae, fungi or lichen. Anthraquinones can be formed biosynthetically from shikimic acid, α-ketoglutarate and mevalonate or from acetate and malonate along the polyketide pathway (Birch et al., 1965; Shibata & Ikekawa, 1963). Those naturally occurring compounds exhibit some interesting in vivo biological activities such as antimalarial, antileukemic, antibacterial (Adwankar & Chitnis, 1982; Sittie et al., 1999; Rath et al., 1995; Ismail et al., 1997). Several Vismia species are known as sources of anthraquinones (Nagem & de Oliveira, 1997; Nguemeving et al., 2006). They are used in traditional medicine as purgative, tonic or febrifugal agents and also for the treatment of skin diseases (Kerharo, 1974; Macfoy & Sama, 1983). Previous phytochemical investigations of Vismia species have revealed the presence of benzophenones, xanthones, triterpenoids and also anthraquinones (Simmonds et al., 1985, Seo et al., 2000). In a continuation of our search for bioactive compounds from Vismia laurentii, we have isolated from the EtOAc extract of the fruits 5 compounds comprising emodin, isoxanthorin, and three new ones laurentiquinones A, B(1) and C (Noungoue et al., 2008). We reported herein the crystal structure of (1).

The asymmetric unit of the title compound contains two independent molecules, (Fig. 1). Rings B (C4-C6/C15-C17), C (C6-C8/C13-C15), D (C8-C13) and F (C26-C28/C37-C39), G (C28-C30/C35-C37), H (C30-C35) are, of course, planar and the dihedral angles between them are B/C = 1.11 (3)°, B/D = 2.86 (3)°, C/D = 1.75 (3)° and F/G = 1.43(39°, F/H = 1.59 (3)°, G/H = 1.57 (3)°. So, rings B, C, D and F, G, H are almost coplanar. Rings A (O1/C1-C4/C17) and E (O8/C23-C26/C39) adopt envelope conformations with C1 and C23 atoms displaced by 0.348 (3) Å and 0.192 (3) Å from the planes of the other rings atoms. The intramolecular O-H···O hydrogen bonds (Table 1) result in the formation of planar rings I (O3/O4/C7-C9/H4O), J (O2/O3/C5-C7/H2O) and K (O10/O11/C29-C31/H11O), L (O9/O10/C27-C29/H9O). They are also almost coplanar with the adjacent rings.

In the crystal structure, intermolecular O-H···O and C-H···O hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure. There also exist a π—π contact between G and H rings, Cg8···Cg7i [symmetry code: (i) -x, 1 - y, -z, where Cg8 and Cg7 are the centroids of the rings H (C30-C35) and G (C28-C30/C35-C39) may further stabilize the structure, with centroid-centroid distance of 3.967 (3) Å.

Experimental

The fruits of Vismia laurentii were collected from the bank of the Nyong river near Nkolmaka Lake (Endome) in Center Province, Cameroon on 17t h October 2004 by Mr. Nana Victor. A voucher specimen (No. 1882/SRFK) has been deposited in the National Herbarium, Yaounde, Cameroon. Dried fruits (0.988 kg) of V. laurentii were grounded and exhaustively extracted by maceration successively with hexane, ethyl acetate and methanol at room temperature. In each extraction 3x5 L of solvent were used for a period of 3x24 h and the extracts obtained were concentrated to dryness to give green (62.3 g), brown (43.6 g) and brown (22.1 g) crude viscous residues from hexane, EtOAc and MeOH extracts, respectively. The EtOAc extract (40 g) was subjected to flash column chromatography on silica gel 60 (0.063-0.200 mm, Merck, 500 g) as a stationary phase eluting with cyclohexane-EtOAc-MeOH mixtures of increasing polarity. Twenty-four fractions of 200 ml each were collected and grouped on the basis of TLC analysis to afford two main fractions A (11.7 g) and B (17.3 g). Fractions A and B were chromatographed on a silica gel column, using as eluent gradient mixtures of cyclohexane and EtOAc to yield laurentiquinone B (16 mg) in addition to other compounds. Orange-red crystals of the title compound were grown from a hexane-chloroform solution of laurentiquinone B.

Refinement

H2O, H4O, H9O and H11O (for OH) were located in difference syntheses and refined isotropically [O-H = 0.88 (3)-0.92 (3) Å and Uiso(H) = 0.069 (10)-0.092 (13) Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.95 and 0.98 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C22H18O7Z = 4
Mr = 394.36F000 = 824
Triclinic, P1Dx = 1.446 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.9234 (4) ÅCell parameters from 8986 reflections
b = 16.0765 (9) Åθ = 1.0–27.5º
c = 17.5304 (9) ŵ = 0.11 mm1
α = 108.746 (2)ºT = 173 (2) K
β = 98.725 (3)ºPlate, orange
γ = 94.147 (2)º0.30 × 0.20 × 0.15 mm
V = 1810.97 (17) Å3

Data collection

Nonius KappaCCD diffractometer4538 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Monochromator: graphiteθmax = 27.6º
T = 173(2) Kθmin = 1.3º
[var phi] and ω scansh = −8→6
Absorption correction: nonek = −20→20
17235 measured reflectionsl = −22→22
8260 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.171  w = 1/[σ2(Fo2) + (0.0685P)2 + 0.3328P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
8260 reflectionsΔρmax = 0.28 e Å3
547 parametersΔρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.9256 (3)0.20606 (10)0.34068 (10)0.0353 (4)
O20.7679 (3)0.44308 (11)0.55456 (9)0.0297 (4)
H2O0.742 (4)0.498 (2)0.5634 (18)0.069 (10)*
O30.6830 (2)0.58232 (10)0.52267 (9)0.0284 (4)
O40.5973 (3)0.72378 (11)0.49464 (9)0.0311 (4)
H4O0.614 (5)0.682 (2)0.5196 (19)0.082 (11)*
O50.6860 (3)0.89104 (11)0.42063 (12)0.0494 (5)
O60.3755 (3)0.82417 (10)0.38316 (10)0.0371 (4)
O70.8008 (3)0.43662 (10)0.21238 (9)0.0335 (4)
O80.3921 (3)0.20125 (10)0.08818 (10)0.0375 (5)
O90.2613 (3)0.45070 (11)0.29753 (9)0.0310 (4)
H9O0.231 (5)0.507 (2)0.3026 (19)0.078 (11)*
O100.1911 (2)0.58838 (10)0.26044 (9)0.0298 (4)
O110.1139 (3)0.72764 (11)0.22628 (10)0.0327 (4)
H11O0.128 (5)0.689 (2)0.252 (2)0.092 (13)*
O120.1994 (3)0.88730 (12)0.15164 (14)0.0650 (7)
O13−0.1093 (3)0.81995 (10)0.10974 (10)0.0352 (4)
O140.2996 (2)0.42633 (10)−0.04866 (9)0.0311 (4)
C10.9107 (4)0.14397 (15)0.38645 (15)0.0335 (6)
C20.9295 (4)0.19223 (15)0.47656 (14)0.0312 (6)
H20.97440.16330.51410.037*
C30.8851 (3)0.27426 (15)0.50542 (14)0.0284 (6)
H30.88300.30050.56210.034*
C40.8398 (3)0.32371 (14)0.44995 (13)0.0238 (5)
C50.7869 (3)0.40951 (14)0.47550 (13)0.0231 (5)
C60.7611 (3)0.45848 (14)0.42189 (13)0.0232 (5)
C70.7075 (3)0.54731 (14)0.44998 (13)0.0227 (5)
C80.6849 (3)0.59752 (14)0.39322 (13)0.0234 (5)
C90.6330 (3)0.68391 (14)0.41885 (13)0.0252 (5)
C100.6215 (3)0.73234 (14)0.36560 (14)0.0256 (5)
C110.6576 (3)0.69623 (15)0.28607 (14)0.0255 (5)
C120.7058 (3)0.61005 (15)0.26013 (14)0.0256 (5)
H120.72940.58470.20600.031*
C130.7199 (3)0.56095 (14)0.31249 (13)0.0236 (5)
C140.7733 (3)0.46976 (14)0.28247 (13)0.0245 (5)
C150.7928 (3)0.41905 (14)0.34075 (13)0.0235 (5)
C160.8462 (3)0.33469 (14)0.31475 (13)0.0255 (5)
H160.86860.30910.26040.031*
C170.8669 (3)0.28760 (14)0.36917 (14)0.0267 (5)
C180.7102 (4)0.08818 (18)0.35335 (17)0.0492 (8)
H18A0.60650.12650.36410.074*
H18B0.69840.04390.38050.074*
H18C0.69650.05820.29410.074*
C191.0782 (4)0.08948 (17)0.36805 (17)0.0479 (7)
H19A1.06750.06310.30860.072*
H19B1.07110.04240.39210.072*
H19C1.20430.12770.39160.072*
C200.5689 (4)0.82504 (16)0.39418 (14)0.0310 (6)
C210.3033 (4)0.90901 (17)0.39716 (18)0.0502 (8)
H21A0.34220.94490.45530.075*
H21B0.15920.89990.38180.075*
H21C0.35940.93970.36390.075*
C220.6469 (4)0.75002 (16)0.22934 (15)0.0346 (6)
H22A0.52820.77970.23220.052*
H22B0.64190.71070.17300.052*
H22C0.76370.79450.24600.052*
C230.3687 (4)0.14102 (15)0.13466 (15)0.0362 (6)
C240.3587 (4)0.18934 (17)0.22190 (16)0.0390 (7)
H240.37040.15740.25910.047*
C250.3347 (4)0.27396 (16)0.25069 (15)0.0354 (6)
H250.32590.30100.30660.042*
C260.3219 (3)0.32519 (15)0.19542 (13)0.0250 (5)
C270.2816 (3)0.41312 (15)0.21919 (13)0.0239 (5)
C280.2650 (3)0.46045 (14)0.16364 (13)0.0219 (5)
C290.2162 (3)0.54995 (14)0.18846 (13)0.0238 (5)
C300.1976 (3)0.59654 (14)0.12902 (13)0.0236 (5)
C310.1486 (3)0.68315 (15)0.15087 (13)0.0258 (5)
C320.1365 (3)0.72859 (14)0.09460 (14)0.0257 (5)
C330.1732 (3)0.68879 (15)0.01611 (14)0.0254 (5)
C340.2184 (3)0.60181 (15)−0.00646 (13)0.0255 (5)
H340.24150.5737−0.06030.031*
C350.2301 (3)0.55620 (14)0.04830 (13)0.0229 (5)
C360.2777 (3)0.46361 (14)0.02161 (13)0.0234 (5)
C370.2963 (3)0.41710 (14)0.08309 (13)0.0223 (5)
C380.3410 (3)0.33106 (14)0.05955 (14)0.0249 (5)
H380.36510.30320.00580.030*
C390.3502 (3)0.28573 (14)0.11525 (14)0.0254 (5)
C400.1808 (5)0.0794 (2)0.0916 (2)0.0791 (12)
H40A0.06810.11300.09720.119*
H40B0.16660.03310.11620.119*
H40C0.18570.05220.03330.119*
C410.5481 (5)0.0925 (2)0.12807 (19)0.0678 (10)
H41A0.55940.06730.07030.102*
H41B0.53470.04480.15120.102*
H41C0.66650.13400.15850.102*
C420.0842 (4)0.82113 (16)0.12240 (14)0.0315 (6)
C43−0.1864 (4)0.90363 (17)0.13526 (18)0.0479 (8)
H43A−0.13940.93380.19420.072*
H43B−0.33080.89320.12390.072*
H43C−0.14150.94070.10500.072*
C440.1659 (4)0.73895 (16)−0.04345 (15)0.0332 (6)
H44A0.05850.7756−0.03700.050*
H44B0.14330.6969−0.09960.050*
H44C0.29130.7769−0.03250.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0528 (12)0.0233 (9)0.0364 (10)0.0154 (8)0.0186 (9)0.0120 (8)
O20.0440 (11)0.0264 (10)0.0218 (9)0.0105 (8)0.0097 (8)0.0092 (7)
O30.0379 (10)0.0267 (9)0.0224 (8)0.0108 (7)0.0100 (8)0.0071 (7)
O40.0419 (11)0.0255 (9)0.0272 (9)0.0099 (8)0.0115 (8)0.0071 (8)
O50.0432 (12)0.0245 (10)0.0737 (14)0.0003 (9)−0.0003 (10)0.0132 (9)
O60.0349 (11)0.0276 (9)0.0510 (11)0.0134 (8)0.0081 (9)0.0140 (8)
O70.0500 (12)0.0301 (9)0.0241 (9)0.0116 (8)0.0146 (8)0.0091 (7)
O80.0563 (12)0.0222 (9)0.0423 (10)0.0125 (8)0.0219 (9)0.0147 (8)
O90.0422 (11)0.0325 (10)0.0221 (9)0.0114 (8)0.0089 (8)0.0116 (8)
O100.0404 (11)0.0280 (9)0.0232 (8)0.0100 (8)0.0106 (8)0.0084 (7)
O110.0472 (12)0.0268 (9)0.0256 (9)0.0156 (8)0.0108 (8)0.0067 (8)
O120.0509 (14)0.0246 (11)0.1069 (18)−0.0017 (10)0.0025 (13)0.0118 (11)
O130.0359 (11)0.0254 (9)0.0455 (10)0.0130 (8)0.0104 (9)0.0103 (8)
O140.0425 (11)0.0295 (9)0.0234 (9)0.0103 (8)0.0106 (8)0.0084 (7)
C10.0412 (16)0.0256 (13)0.0380 (14)0.0107 (11)0.0058 (12)0.0159 (11)
C20.0339 (15)0.0311 (14)0.0340 (14)0.0103 (11)0.0055 (12)0.0174 (11)
C30.0268 (14)0.0310 (14)0.0315 (13)0.0065 (11)0.0060 (11)0.0150 (11)
C40.0233 (13)0.0229 (12)0.0270 (12)0.0034 (10)0.0065 (10)0.0099 (10)
C50.0238 (13)0.0239 (12)0.0212 (12)0.0032 (10)0.0056 (10)0.0065 (10)
C60.0236 (13)0.0227 (12)0.0237 (12)0.0030 (10)0.0061 (10)0.0074 (10)
C70.0208 (12)0.0227 (12)0.0245 (12)0.0018 (10)0.0050 (10)0.0076 (10)
C80.0232 (13)0.0221 (12)0.0264 (12)0.0045 (10)0.0063 (10)0.0091 (10)
C90.0238 (13)0.0222 (12)0.0284 (12)0.0005 (10)0.0061 (11)0.0067 (10)
C100.0231 (13)0.0207 (12)0.0321 (13)0.0025 (10)0.0046 (11)0.0083 (10)
C110.0237 (13)0.0261 (13)0.0301 (13)0.0030 (10)0.0057 (11)0.0139 (10)
C120.0243 (13)0.0279 (13)0.0266 (12)0.0041 (10)0.0067 (10)0.0108 (10)
C130.0206 (13)0.0259 (12)0.0260 (12)0.0037 (10)0.0072 (10)0.0096 (10)
C140.0246 (13)0.0245 (13)0.0233 (12)0.0024 (10)0.0065 (10)0.0059 (10)
C150.0243 (13)0.0226 (12)0.0248 (12)0.0023 (10)0.0071 (10)0.0088 (10)
C160.0299 (14)0.0240 (12)0.0241 (12)0.0046 (10)0.0095 (11)0.0080 (10)
C170.0281 (14)0.0218 (12)0.0310 (13)0.0053 (10)0.0080 (11)0.0084 (10)
C180.055 (2)0.0458 (17)0.0454 (17)−0.0039 (15)−0.0032 (15)0.0207 (14)
C190.063 (2)0.0366 (16)0.0481 (17)0.0264 (14)0.0138 (15)0.0131 (13)
C200.0345 (15)0.0311 (14)0.0287 (13)0.0050 (12)0.0037 (12)0.0129 (11)
C210.053 (2)0.0341 (16)0.071 (2)0.0217 (14)0.0164 (16)0.0229 (15)
C220.0397 (16)0.0339 (14)0.0365 (14)0.0070 (12)0.0093 (12)0.0188 (12)
C230.0480 (18)0.0236 (13)0.0411 (15)0.0041 (12)0.0049 (13)0.0180 (12)
C240.0464 (17)0.0383 (16)0.0457 (16)0.0127 (13)0.0159 (14)0.0275 (13)
C250.0425 (16)0.0369 (15)0.0356 (14)0.0122 (12)0.0154 (13)0.0190 (12)
C260.0218 (13)0.0284 (13)0.0284 (12)0.0043 (10)0.0054 (10)0.0137 (10)
C270.0236 (13)0.0281 (13)0.0205 (11)0.0045 (10)0.0050 (10)0.0084 (10)
C280.0212 (13)0.0223 (12)0.0217 (11)0.0024 (10)0.0024 (10)0.0073 (10)
C290.0208 (13)0.0262 (13)0.0232 (12)0.0024 (10)0.0043 (10)0.0067 (10)
C300.0230 (13)0.0228 (12)0.0242 (12)0.0017 (10)0.0039 (10)0.0075 (10)
C310.0249 (14)0.0269 (13)0.0240 (12)0.0034 (10)0.0039 (10)0.0067 (10)
C320.0245 (13)0.0209 (12)0.0317 (13)0.0031 (10)0.0038 (11)0.0095 (10)
C330.0222 (13)0.0268 (13)0.0285 (12)0.0017 (10)0.0031 (10)0.0121 (10)
C340.0243 (13)0.0293 (13)0.0251 (12)0.0041 (10)0.0069 (10)0.0112 (10)
C350.0186 (12)0.0249 (12)0.0246 (12)0.0024 (10)0.0041 (10)0.0075 (10)
C360.0199 (12)0.0273 (13)0.0233 (12)0.0022 (10)0.0051 (10)0.0087 (10)
C370.0211 (12)0.0231 (12)0.0235 (12)0.0014 (10)0.0064 (10)0.0081 (10)
C380.0241 (13)0.0238 (12)0.0254 (12)0.0016 (10)0.0049 (10)0.0067 (10)
C390.0229 (13)0.0209 (12)0.0326 (13)0.0039 (10)0.0067 (11)0.0084 (10)
C400.085 (3)0.073 (2)0.075 (2)−0.041 (2)−0.019 (2)0.045 (2)
C410.098 (3)0.070 (2)0.0523 (19)0.059 (2)0.0272 (19)0.0272 (17)
C420.0387 (16)0.0264 (14)0.0319 (14)0.0052 (12)0.0070 (12)0.0126 (11)
C430.061 (2)0.0297 (15)0.0617 (19)0.0253 (14)0.0266 (16)0.0164 (13)
C440.0368 (15)0.0319 (14)0.0375 (14)0.0086 (11)0.0103 (12)0.0185 (12)

Geometric parameters (Å, °)

O2—H2O0.88 (3)C22—H22B0.9800
O4—H4O0.91 (3)C22—H22C0.9800
O9—H9O0.92 (3)C23—O81.467 (3)
O11—H11O0.88 (3)C23—C241.491 (3)
C1—O11.475 (3)C23—C401.509 (4)
C1—C21.500 (3)C23—C411.514 (4)
C1—C191.515 (3)C24—C251.323 (3)
C1—C181.520 (3)C24—H240.9500
C2—C31.329 (3)C25—C261.457 (3)
C2—H20.9500C25—H250.9500
C3—C41.455 (3)C26—C391.395 (3)
C3—H30.9500C26—C271.401 (3)
C4—C171.395 (3)C27—O91.345 (2)
C4—C51.401 (3)C27—C281.413 (3)
C5—O21.347 (2)C28—C371.417 (3)
C5—C61.407 (3)C28—C291.444 (3)
C6—C151.417 (3)C29—O101.259 (2)
C6—C71.449 (3)C29—C301.462 (3)
C7—O31.260 (2)C30—C311.402 (3)
C7—C81.467 (3)C30—C351.415 (3)
C8—C91.407 (3)C31—O111.353 (3)
C8—C131.413 (3)C31—C321.400 (3)
C9—O41.346 (3)C32—C331.390 (3)
C9—C101.392 (3)C32—C421.499 (3)
C10—C111.396 (3)C33—C341.398 (3)
C10—C201.503 (3)C33—C441.508 (3)
C11—C121.395 (3)C34—C351.380 (3)
C11—C221.511 (3)C34—H340.9500
C12—C131.387 (3)C35—C361.488 (3)
C12—H120.9500C36—O141.223 (2)
C13—C141.485 (3)C36—C371.492 (3)
C14—O71.223 (2)C37—C381.383 (3)
C14—C151.495 (3)C38—C391.391 (3)
C15—C161.382 (3)C38—H380.9500
C16—C171.394 (3)C39—O81.356 (3)
C16—H160.9500C40—H40A0.9800
C17—O11.360 (3)C40—H40B0.9800
C18—H18A0.9800C40—H40C0.9800
C18—H18B0.9800C41—H41A0.9800
C18—H18C0.9800C41—H41B0.9800
C19—H19A0.9800C41—H41C0.9800
C19—H19B0.9800C42—O121.197 (3)
C19—H19C0.9800C42—O131.322 (3)
C20—O51.201 (3)C43—O131.444 (3)
C20—O61.322 (3)C43—H43A0.9800
C21—O61.446 (3)C43—H43B0.9800
C21—H21A0.9800C43—H43C0.9800
C21—H21B0.9800C44—H44A0.9800
C21—H21C0.9800C44—H44B0.9800
C22—H22A0.9800C44—H44C0.9800
C17—O1—C1120.10 (17)H22A—C22—H22B109.5
C5—O2—H2O107.1 (19)C11—C22—H22C109.5
C9—O4—H4O104 (2)H22A—C22—H22C109.5
C20—O6—C21116.6 (2)H22B—C22—H22C109.5
C39—O8—C23121.75 (17)O8—C23—C24112.24 (19)
C27—O9—H9O106.2 (19)O8—C23—C40106.2 (2)
C31—O11—H11O103 (2)C24—C23—C40110.8 (2)
C42—O13—C43117.9 (2)O8—C23—C41104.3 (2)
O1—C1—C2111.49 (18)C24—C23—C41111.3 (2)
O1—C1—C19104.25 (18)C40—C23—C41111.8 (3)
C2—C1—C19111.7 (2)C25—C24—C23124.1 (2)
O1—C1—C18107.4 (2)C25—C24—H24118.0
C2—C1—C18109.5 (2)C23—C24—H24118.0
C19—C1—C18112.2 (2)C24—C25—C26119.1 (2)
C3—C2—C1122.0 (2)C24—C25—H25120.4
C3—C2—H2119.0C26—C25—H25120.4
C1—C2—H2119.0C39—C26—C27118.0 (2)
C2—C3—C4119.8 (2)C39—C26—C25119.2 (2)
C2—C3—H3120.1C27—C26—C25122.8 (2)
C4—C3—H3120.1O9—C27—C26116.96 (19)
C17—C4—C5118.0 (2)O9—C27—C28121.5 (2)
C17—C4—C3118.7 (2)C26—C27—C28121.56 (19)
C5—C4—C3123.07 (19)C27—C28—C37117.9 (2)
O2—C5—C4116.25 (19)C27—C28—C29120.72 (19)
O2—C5—C6122.1 (2)C37—C28—C29121.40 (19)
C4—C5—C6121.58 (19)O10—C29—C28121.0 (2)
C5—C6—C15118.1 (2)O10—C29—C30119.8 (2)
C5—C6—C7120.50 (19)C28—C29—C30119.24 (18)
C15—C6—C7121.4 (2)C31—C30—C35118.1 (2)
O3—C7—C6120.89 (19)C31—C30—C29120.71 (19)
O3—C7—C8119.7 (2)C35—C30—C29121.2 (2)
C6—C7—C8119.38 (19)O11—C31—C32116.6 (2)
C9—C8—C13118.7 (2)O11—C31—C30122.8 (2)
C9—C8—C7120.59 (19)C32—C31—C30120.61 (19)
C13—C8—C7120.6 (2)C33—C32—C31120.7 (2)
O4—C9—C10117.4 (2)C33—C32—C42121.7 (2)
O4—C9—C8122.6 (2)C31—C32—C42117.63 (19)
C10—C9—C8119.9 (2)C32—C33—C34118.9 (2)
C9—C10—C11121.2 (2)C32—C33—C44120.5 (2)
C9—C10—C20119.4 (2)C34—C33—C44120.6 (2)
C11—C10—C20119.4 (2)C35—C34—C33121.0 (2)
C12—C11—C10119.0 (2)C35—C34—H34119.5
C12—C11—C22120.5 (2)C33—C34—H34119.5
C10—C11—C22120.5 (2)C34—C35—C30120.7 (2)
C13—C12—C11120.8 (2)C34—C35—C36119.22 (19)
C13—C12—H12119.6C30—C35—C36120.04 (19)
C11—C12—H12119.6O14—C36—C35121.2 (2)
C12—C13—C8120.4 (2)O14—C36—C37120.8 (2)
C12—C13—C14118.95 (19)C35—C36—C37117.98 (18)
C8—C13—C14120.66 (19)C38—C37—C28121.0 (2)
O7—C14—C13121.5 (2)C38—C37—C36118.88 (19)
O7—C14—C15120.6 (2)C28—C37—C36120.08 (19)
C13—C14—C15117.95 (18)C37—C38—C39119.4 (2)
C16—C15—C6121.0 (2)C37—C38—H38120.3
C16—C15—C14119.04 (19)C39—C38—H38120.3
C6—C15—C14119.9 (2)O8—C39—C38116.58 (19)
C15—C16—C17119.2 (2)O8—C39—C26121.3 (2)
C15—C16—H16120.4C38—C39—C26122.1 (2)
C17—C16—H16120.4C23—C40—H40A109.5
O1—C17—C16116.38 (19)C23—C40—H40B109.5
O1—C17—C4121.5 (2)H40A—C40—H40B109.5
C16—C17—C4122.0 (2)C23—C40—H40C109.5
C1—C18—H18A109.5H40A—C40—H40C109.5
C1—C18—H18B109.5H40B—C40—H40C109.5
H18A—C18—H18B109.5C23—C41—H41A109.5
C1—C18—H18C109.5C23—C41—H41B109.5
H18A—C18—H18C109.5H41A—C41—H41B109.5
H18B—C18—H18C109.5C23—C41—H41C109.5
C1—C19—H19A109.5H41A—C41—H41C109.5
C1—C19—H19B109.5H41B—C41—H41C109.5
H19A—C19—H19B109.5O12—C42—O13124.1 (2)
C1—C19—H19C109.5O12—C42—C32125.5 (2)
H19A—C19—H19C109.5O13—C42—C32110.3 (2)
H19B—C19—H19C109.5O13—C43—H43A109.5
O5—C20—O6124.5 (2)O13—C43—H43B109.5
O5—C20—C10124.8 (2)H43A—C43—H43B109.5
O6—C20—C10110.6 (2)O13—C43—H43C109.5
O6—C21—H21A109.5H43A—C43—H43C109.5
O6—C21—H21B109.5H43B—C43—H43C109.5
H21A—C21—H21B109.5C33—C44—H44A109.5
O6—C21—H21C109.5C33—C44—H44B109.5
H21A—C21—H21C109.5H44A—C44—H44B109.5
H21B—C21—H21C109.5C33—C44—H44C109.5
C11—C22—H22A109.5H44A—C44—H44C109.5
C11—C22—H22B109.5H44B—C44—H44C109.5
O1—C1—C2—C324.9 (3)C25—C26—C27—O92.3 (3)
C19—C1—C2—C3141.1 (2)C39—C26—C27—C281.6 (3)
C18—C1—C2—C3−93.9 (3)C25—C26—C27—C28−178.3 (2)
C1—C2—C3—C4−7.6 (4)O9—C27—C28—C37177.5 (2)
C2—C3—C4—C17−7.6 (3)C26—C27—C28—C37−1.9 (3)
C2—C3—C4—C5178.3 (2)O9—C27—C28—C29−2.9 (3)
C17—C4—C5—O2−178.06 (19)C26—C27—C28—C29177.7 (2)
C3—C4—C5—O2−3.9 (3)C27—C28—C29—O101.4 (3)
C17—C4—C5—C60.1 (3)C37—C28—C29—O10−179.1 (2)
C3—C4—C5—C6174.2 (2)C27—C28—C29—C30−179.2 (2)
O2—C5—C6—C15177.2 (2)C37—C28—C29—C300.4 (3)
C4—C5—C6—C15−0.9 (3)O10—C29—C30—C31−1.2 (3)
O2—C5—C6—C7−1.6 (3)C28—C29—C30—C31179.4 (2)
C4—C5—C6—C7−179.6 (2)O10—C29—C30—C35178.2 (2)
C5—C6—C7—O30.0 (3)C28—C29—C30—C35−1.2 (3)
C15—C6—C7—O3−178.8 (2)C35—C30—C31—O11179.8 (2)
C5—C6—C7—C8178.9 (2)C29—C30—C31—O11−0.8 (3)
C15—C6—C7—C80.2 (3)C35—C30—C31—C32−1.3 (3)
O3—C7—C8—C9−1.1 (3)C29—C30—C31—C32178.1 (2)
C6—C7—C8—C9180.0 (2)O11—C31—C32—C33178.9 (2)
O3—C7—C8—C13177.3 (2)C30—C31—C32—C33−0.1 (3)
C6—C7—C8—C13−1.6 (3)O11—C31—C32—C42−0.8 (3)
C13—C8—C9—O4−179.94 (19)C30—C31—C32—C42−179.7 (2)
C7—C8—C9—O4−1.6 (3)C31—C32—C33—C341.3 (3)
C13—C8—C9—C10−1.5 (3)C42—C32—C33—C34−179.1 (2)
C7—C8—C9—C10176.9 (2)C31—C32—C33—C44−178.2 (2)
O4—C9—C10—C11179.6 (2)C42—C32—C33—C441.4 (3)
C8—C9—C10—C111.1 (3)C32—C33—C34—C35−1.1 (3)
O4—C9—C10—C20−0.5 (3)C44—C33—C34—C35178.4 (2)
C8—C9—C10—C20−179.1 (2)C33—C34—C35—C30−0.3 (3)
C9—C10—C11—C120.0 (3)C33—C34—C35—C36179.7 (2)
C20—C10—C11—C12−179.9 (2)C31—C30—C35—C341.5 (3)
C9—C10—C11—C22−179.3 (2)C29—C30—C35—C34−177.9 (2)
C20—C10—C11—C220.9 (3)C31—C30—C35—C36−178.5 (2)
C10—C11—C12—C13−0.6 (3)C29—C30—C35—C362.1 (3)
C22—C11—C12—C13178.6 (2)C34—C35—C36—O14−2.6 (3)
C11—C12—C13—C80.2 (3)C30—C35—C36—O14177.4 (2)
C11—C12—C13—C14−179.5 (2)C34—C35—C36—C37177.9 (2)
C9—C8—C13—C120.9 (3)C30—C35—C36—C37−2.1 (3)
C7—C8—C13—C12−177.5 (2)C27—C28—C37—C380.3 (3)
C9—C8—C13—C14−179.4 (2)C29—C28—C37—C38−179.3 (2)
C7—C8—C13—C142.2 (3)C27—C28—C37—C36179.1 (2)
C12—C13—C14—O7−1.5 (3)C29—C28—C37—C36−0.5 (3)
C8—C13—C14—O7178.8 (2)O14—C36—C37—C380.6 (3)
C12—C13—C14—C15178.4 (2)C35—C36—C37—C38−179.8 (2)
C8—C13—C14—C15−1.3 (3)O14—C36—C37—C28−178.2 (2)
C5—C6—C15—C160.4 (3)C35—C36—C37—C281.3 (3)
C7—C6—C15—C16179.2 (2)C28—C37—C38—C391.6 (3)
C5—C6—C15—C14−178.1 (2)C36—C37—C38—C39−177.2 (2)
C7—C6—C15—C140.7 (3)C37—C38—C39—O8179.2 (2)
O7—C14—C15—C161.2 (3)C37—C38—C39—C26−2.0 (3)
C13—C14—C15—C16−178.7 (2)C27—C26—C39—O8179.2 (2)
O7—C14—C15—C6179.8 (2)C25—C26—C39—O8−0.9 (3)
C13—C14—C15—C6−0.2 (3)C27—C26—C39—C380.5 (3)
C6—C15—C16—C170.7 (3)C25—C26—C39—C38−179.7 (2)
C14—C15—C16—C17179.2 (2)C33—C32—C42—O12−86.8 (3)
C15—C16—C17—O1−178.1 (2)C31—C32—C42—O1292.8 (3)
C15—C16—C17—C4−1.5 (4)C33—C32—C42—O1392.9 (3)
C5—C4—C17—O1177.5 (2)C31—C32—C42—O13−87.5 (3)
C3—C4—C17—O13.1 (3)C16—C17—O1—C1−166.9 (2)
C5—C4—C17—C161.1 (3)C4—C17—O1—C116.5 (3)
C3—C4—C17—C16−173.3 (2)C2—C1—O1—C17−29.0 (3)
C9—C10—C20—O596.9 (3)C19—C1—O1—C17−149.8 (2)
C11—C10—C20—O5−83.2 (3)C18—C1—O1—C1791.0 (3)
C9—C10—C20—O6−85.6 (3)O5—C20—O6—C215.9 (4)
C11—C10—C20—O694.3 (2)C10—C20—O6—C21−171.6 (2)
O8—C23—C24—C2512.5 (4)C38—C39—O8—C23−168.0 (2)
C40—C23—C24—C25−106.0 (3)C26—C39—O8—C2313.3 (3)
C41—C23—C24—C25129.0 (3)C24—C23—O8—C39−18.1 (3)
C23—C24—C25—C26−1.7 (4)C40—C23—O8—C39103.1 (3)
C24—C25—C26—C39−4.8 (4)C41—C23—O8—C39−138.7 (2)
C24—C25—C26—C27175.0 (2)O12—C42—O13—C43−2.1 (4)
C39—C26—C27—O9−177.88 (19)C32—C42—O13—C43178.22 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4O···O30.91 (3)1.72 (3)2.567 (2)152 (3)
O11—H11O···O100.88 (3)1.75 (4)2.568 (2)153 (3)
O9—H9O···O100.92 (3)1.72 (3)2.558 (2)150 (3)
O2—H2O···O30.88 (3)1.77 (3)2.562 (2)148 (3)
O2—H20···O9i0.88 (3)2.31 (3)2.654 (2)103 (2)
C34—H34···O7ii0.952.593.441 (2)150
C44—H44B···O7ii0.982.513.423 (2)155
C44—H44C···O8ii0.982.583.419 (2)144

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2545).

References

  • Adwankar, M. K. & Chitnis, M. P. (1982). Chemotherapy, 28, 291–293. [PubMed]
  • Birch, A. J., Ryan, A. J., Schofiel, J. & Smith, H. (1965). J. Chem. Soc.39, 1231–1234. [PubMed]
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Ismail, N. H., Ali, A. M., Aimi, N., Kitajima, M., Takayama, H. & Lajis, N. H. (1997). Phytochemistry, 45, 1723–1725.
  • Kerharo, J. O. (1974). Pharmacopé Sénégalaise Traditionnelle, p. 485. Paris: Vigot-Frère.
  • Macfoy, C. A. & Sama, A. M. (1983). J. Ethnopharmacol.8, 215–223. [PubMed]
  • Nagem, T. J. & de Oliveira, F. F. (1997). J. Braz. Chem. Soc.8, 505–508.
  • Nguemeving, J. R., Azebaze, A. G. B., Kuete, V., Carly, N. N. E., Beng, V. P., Meyer, M., Blond, A., Bodo, B. & Nkengfack, A. E. (2006). Phytochemistry, 67, 1341–1346. [PubMed]
  • Noungoue, T. D., Antheaume, C., Chaabi, M., Ndjakou, B. L., Ngouela, S., Lobstein, A. & Tsamo, E. (2008). Phytochemistry, 69, 1024–1028. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rath, G., Ndonzao, M. & Hostettmann, K. (1995). Col. Int. J. Pharmacogen.69, 413–414.
  • Seo, E.-K., Wani, M. C., Wall, M. E., Navarro, H., Mukherjee, R., Farnsworth, N. R. & Kinghorn, A. D. (2000). Phytochemistry, 55, 35–42. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shibata, S. & Ikekawa, T. (1963). Pharm. Bull. Tokyo, 11, 368–372.
  • Simmonds, M. S. J., Blaney, W. M., Delle Monache, F., Marquina Mac-Quhae, M. & Marini Bettolo, G. B. (1985). J. Chem. Ecol 11, 1593–1599. [PubMed]
  • Sittie, A. A., Lemmich, E., Olsen, C. E., Hviid, L., Harazmi, F. K., Nkrumah, F. K. & Christensen, S. B. (1999). Planta Med 65, 259–261. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography