PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2433.
Published online 2008 November 26. doi:  10.1107/S1600536808038713
PMCID: PMC2960078

2,3,4,9-Tetra­hydro-1H-carbazole

Abstract

In the title compound, C12H13N, two methyl­ene C atoms of the cyclo­hexene ring are disordered over two sites with occupancies of 0.591 (10) and 0.409 (10); both disorder components adopt half-chair conformations. The crystal structure is stabilized by inter­molecular N—H(...)π and C—H(...)π inter­actions.

Related literature

For a related structure, see: Arulmozhi et al. (2008 [triangle]). For general background, see: Mi et al. (2003 [triangle]); Hewlins et al. (1984 [triangle]); Mohanakrishnan & Srinivasan (1995a [triangle],b [triangle]); Kansal & Potier (1986 [triangle]); Phillipson & Zenk (1980 [triangle]); Saxton (1983 [triangle]); Abraham (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2433-scheme1.jpg

Experimental

Crystal data

  • C12H13N
  • M r = 171.23
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2433-efi1.jpg
  • a = 6.1067 (4) Å
  • b = 7.9488 (5) Å
  • c = 19.4512 (12) Å
  • V = 944.18 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 (2) K
  • 0.26 × 0.15 × 0.15 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer
  • Absorption correction: none
  • 13269 measured reflections
  • 1777 independent reflections
  • 1323 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.123
  • S = 1.07
  • 1777 reflections
  • 137 parameters
  • 15 restraints
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038713/ci2708sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038713/ci2708Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Dr J. Jothi Kumar, Principal of Presidency College (Autonomous), Chennai, for providing computer and internet facilities. Dr Babu Vargheese, SAIF, IIT-Madras, India, is thanked for his help with the data collection.

supplementary crystallographic information

Comment

Carbazole derivatives exhibit good charge transfer and hole transporting properties, which are being explored for a multitude of optoelectronic and photocatalytic applications, including organic light emitting diodes (OLEDs) (Mi et al., 2003). In carbazole derivatives, the preliminary study shows that the presence of oxygenated substituents increases their biological activity (Hewlins et al., 1984). The 2,3-disubstituted indoles have been used as bidentate synthons for the synthesis of various medicinally important carbazole alkaloids (Mohanakrishnan & Srinivasan, 1995a,b). Intercalation between the base pairs in DNA has been implicated for their anticancer activity. It was conceived that the benzo[b] carbazoles as isosteric analogs of pyrido[4,3-b]carbazoles, with oxygenated D-ring could mimic the anti-cancer activity of ellipticine. So it was of interest to study the anticancer activity of D-ring oxygenated benzo[b]carbazoles as it is believed that these molecules could form a stable intercalation complex with DNA (Kansal & Potier, 1986). Tetrahydrocarbazole derivatives are present in the framework of indole-type alkaloids of biological interest (Phillipson & Zenk, 1980; Saxton, 1983; Abraham, 1975). We report here the crystal structure of the title compound (Fig. 1).

Bond lengths are normal and are comparable to the corresponding values observed in 1-naphthyl-9H-carbazole-4-sulfonate (Arulmozhi et al., 2008). The dihedral angle between the C1–C6 and N1/C5—C8 rings is 0.6 (1)°. Both the major and minor conformers of the disordered cyclohexene ring adopt half-chair conformations.

The crystal structure is stabilized by intermolecular N—H···π and C–H···π interactions (Table 1).

Experimental

A mixture of cyclohexanone (0.12 mol) and glacial acetic acid (40 ml) was heated and then redistilled phenylhydrazine (0.1 mol) was added dropwise for 30 min. The mixture was refluxed on a water bath for a further period of 30 min. The reaction mixture was poured into ice-cold water with continuous stirring and brown-coloured solid separated out. It was filtered, washed repeatedly with water and recrystallized from methanol in the presence of a little decolorized carbon to give the title compound. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution.

Refinement

Atoms C10 and C11 of the cyclohexene ring are disordered over two positions (C10A/C10B and C11A/C11B) with refined occupancies of 0.591 (10) and 0.409 (10). The corresponding bond distances involving the disordered atoms were restrained to be equal. H atoms were positioned geometrically (C—H = 0.93Å and N—H = 0.86%A) and were treated as riding on their parent atoms, with Uiso(H)=1.2Ueq(C,N). In the absence of significant anomalous dispersion effects, Friedel pairs were merged before the final refinement.

Figures

Fig. 1.
The molecular structure of title compound, showing 30% probability displacement ellipsoids. Both disorder components are shown.

Crystal data

C12H13NF000 = 368
Mr = 171.23Dx = 1.205 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1778 reflections
a = 6.1067 (4) Åθ = 2.1–31.1º
b = 7.9488 (5) ŵ = 0.07 mm1
c = 19.4512 (12) ÅT = 293 (2) K
V = 944.18 (10) Å3Block, colourless
Z = 40.26 × 0.15 × 0.15 mm

Data collection

Bruker Kappa APEXII area-detector diffractometer1323 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Monochromator: graphiteθmax = 31.1º
T = 293(2) Kθmin = 2.1º
ω and [var phi] scansh = −8→8
Absorption correction: nonek = −11→11
13269 measured reflectionsl = −28→28
1777 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.123  w = 1/[σ2(Fo2) + (0.0603P)2 + 0.0496P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1777 reflectionsΔρmax = 0.14 e Å3
137 parametersΔρmin = −0.20 e Å3
15 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N10.7448 (2)0.5987 (2)0.95685 (8)0.0547 (4)
H1A0.86560.65130.94950.066*
C10.3210 (3)0.4486 (2)1.06567 (10)0.0557 (5)
H10.19450.38461.06040.067*
C20.3803 (4)0.5087 (3)1.12920 (10)0.0634 (5)
H20.29210.48541.16700.076*
C30.5689 (4)0.6033 (3)1.13826 (10)0.0619 (5)
H30.60460.64191.18200.074*
C40.7035 (3)0.6410 (2)1.08415 (10)0.0568 (5)
H40.82980.70451.09040.068*
C50.6448 (3)0.5811 (2)1.01954 (9)0.0457 (4)
C60.4535 (3)0.4849 (2)1.00903 (9)0.0429 (4)
C70.4433 (3)0.4464 (2)0.93742 (8)0.0429 (4)
C80.6210 (3)0.5184 (2)0.90741 (9)0.0473 (4)
C90.6730 (3)0.5153 (3)0.83301 (10)0.0668 (6)
H9A0.82520.48410.82670.080*0.591 (10)
H9B0.65210.62670.81380.080*0.591 (10)
H9C0.78930.43710.82400.080*0.409 (10)
H9D0.71930.62490.81820.080*0.409 (10)
C10A0.5287 (9)0.3918 (9)0.7958 (4)0.0674 (15)0.591 (10)
H10A0.58760.27950.80190.101*0.591 (10)
H10B0.53180.41710.74700.101*0.591 (10)
C11A0.2927 (8)0.3943 (9)0.8204 (2)0.0638 (13)0.591 (10)
H11A0.20830.31330.79410.096*0.591 (10)
H11B0.23080.50490.81220.096*0.591 (10)
C10B0.4709 (17)0.4587 (13)0.7953 (5)0.076 (2)0.409 (10)
H10C0.36990.55270.79240.114*0.409 (10)
H10D0.51170.42820.74870.114*0.409 (10)
C11B0.3543 (15)0.3125 (11)0.8276 (3)0.0651 (19)0.409 (10)
H11C0.23130.28060.79890.098*0.409 (10)
H11D0.45340.21730.83000.098*0.409 (10)
C120.2741 (3)0.3519 (3)0.89757 (10)0.0579 (5)
H12A0.12930.38170.91410.069*0.591 (10)
H12B0.29430.23200.90430.069*0.591 (10)
H12C0.14280.41790.89410.069*0.409 (10)
H12D0.23900.24940.92120.069*0.409 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0455 (8)0.0620 (9)0.0565 (9)−0.0161 (8)0.0044 (7)0.0019 (7)
C10.0518 (10)0.0556 (11)0.0597 (11)−0.0079 (9)0.0078 (9)0.0039 (9)
C20.0707 (12)0.0693 (12)0.0502 (10)0.0015 (12)0.0120 (9)0.0040 (9)
C30.0752 (13)0.0599 (11)0.0507 (11)0.0054 (11)−0.0054 (10)−0.0048 (9)
C40.0577 (11)0.0495 (10)0.0631 (12)−0.0038 (9)−0.0095 (10)−0.0022 (9)
C50.0447 (8)0.0402 (8)0.0522 (9)−0.0020 (7)−0.0005 (7)0.0042 (7)
C60.0425 (8)0.0374 (7)0.0488 (8)0.0012 (7)0.0007 (7)0.0036 (7)
C70.0422 (8)0.0379 (8)0.0487 (9)0.0013 (7)−0.0007 (7)0.0010 (7)
C80.0440 (8)0.0468 (9)0.0511 (9)0.0018 (8)0.0023 (7)0.0017 (8)
C90.0601 (11)0.0876 (15)0.0526 (10)−0.0017 (12)0.0084 (9)0.0054 (11)
C10A0.061 (3)0.082 (4)0.059 (2)0.010 (3)0.004 (2)−0.007 (3)
C11A0.057 (2)0.076 (3)0.058 (2)0.003 (2)−0.0071 (18)−0.010 (2)
C10B0.084 (6)0.097 (6)0.046 (3)0.009 (5)−0.008 (4)−0.005 (4)
C11B0.071 (4)0.067 (4)0.057 (3)0.003 (4)−0.011 (3)−0.018 (3)
C120.0515 (10)0.0590 (11)0.0632 (11)−0.0084 (9)−0.0038 (9)−0.0028 (9)

Geometric parameters (Å, °)

N1—C51.371 (2)C9—H9B0.97
N1—C81.379 (2)C9—H9C0.96
N1—H1A0.86C9—H9D0.96
C1—C21.374 (3)C10A—C11A1.519 (7)
C1—C61.397 (2)C10A—H10A0.97
C1—H10.93C10A—H10B0.97
C2—C31.387 (3)C11A—C121.542 (5)
C2—H20.93C11A—H11A0.97
C3—C41.369 (3)C11A—H11B0.97
C3—H30.93C10B—C11B1.501 (10)
C4—C51.391 (3)C10B—H10C0.97
C4—H40.93C10B—H10D0.97
C5—C61.411 (2)C11B—C121.480 (6)
C6—C71.427 (2)C11B—H11C0.97
C7—C81.359 (2)C11B—H11D0.97
C7—C121.494 (2)C12—H12A0.97
C8—C91.482 (3)C12—H12B0.97
C9—C10B1.505 (9)C12—H12C0.96
C9—C10A1.505 (6)C12—H12D0.96
C9—H9A0.97
C5—N1—C8109.19 (14)H9C—C9—H9D108.3
C5—N1—H1A125.4C9—C10A—C11A113.3 (5)
C8—N1—H1A125.4C9—C10A—H10A108.9
C2—C1—C6118.99 (18)C11A—C10A—H10A108.9
C2—C1—H1120.5C9—C10A—H10B108.9
C6—C1—H1120.5C11A—C10A—H10B108.9
C1—C2—C3121.49 (19)H10A—C10A—H10B107.7
C1—C2—H2119.3C10A—C11A—C12112.0 (5)
C3—C2—H2119.3C10A—C11A—H11A109.2
C4—C3—C2121.30 (18)C12—C11A—H11A109.2
C4—C3—H3119.3C10A—C11A—H11B109.2
C2—C3—H3119.3C12—C11A—H11B109.2
C3—C4—C5117.72 (18)H11A—C11A—H11B107.9
C3—C4—H4121.1C11B—C10B—C9114.6 (7)
C5—C4—H4121.1C11B—C10B—H10C108.6
N1—C5—C4130.84 (17)C9—C10B—H10C108.6
N1—C5—C6107.17 (15)C11B—C10B—H10D108.6
C4—C5—C6121.99 (17)C9—C10B—H10D108.6
C1—C6—C5118.50 (16)H10C—C10B—H10D107.6
C1—C6—C7134.42 (16)C12—C11B—C10B112.2 (7)
C5—C6—C7107.08 (15)C12—C11B—H11C109.2
C8—C7—C6107.10 (14)C10B—C11B—H11C109.2
C8—C7—C12122.77 (16)C12—C11B—H11D109.2
C6—C7—C12130.10 (15)C10B—C11B—H11D109.2
C7—C8—N1109.45 (15)H11C—C11B—H11D107.9
C7—C8—C9125.70 (17)C11B—C12—C7110.8 (3)
N1—C8—C9124.85 (17)C7—C12—C11A110.1 (2)
C8—C9—C10B107.8 (4)C11B—C12—H12A131.1
C8—C9—C10A110.8 (3)C7—C12—H12A109.6
C8—C9—H9A109.5C11A—C12—H12A109.6
C10B—C9—H9A130.4C11B—C12—H12B82.7
C10A—C9—H9A109.5C7—C12—H12B109.6
C8—C9—H9B109.5C11A—C12—H12B109.6
C10B—C9—H9B88.7H12A—C12—H12B108.1
C10A—C9—H9B109.5C11B—C12—H12C109.1
H9A—C9—H9B108.1C7—C12—H12C109.8
C8—C9—H9C110.3C11A—C12—H12C82.8
C10B—C9—H9C109.0H12B—C12—H12C130.7
C10A—C9—H9C85.6C11B—C12—H12D109.5
H9B—C9—H9C128.2C7—C12—H12D109.4
C8—C9—H9D109.9C11A—C12—H12D131.9
C10B—C9—H9D111.5H12A—C12—H12D81.1
C10A—C9—H9D128.3H12C—C12—H12D108.1
H9A—C9—H9D84.9
C6—C1—C2—C3−0.4 (3)C5—N1—C8—C7−1.0 (2)
C1—C2—C3—C40.1 (3)C5—N1—C8—C9177.78 (18)
C2—C3—C4—C50.0 (3)C7—C8—C9—C10B14.1 (5)
C8—N1—C5—C4−178.92 (19)N1—C8—C9—C10B−164.5 (5)
C8—N1—C5—C60.7 (2)C7—C8—C9—C10A−11.7 (4)
C3—C4—C5—N1179.77 (19)N1—C8—C9—C10A169.7 (3)
C3—C4—C5—C60.2 (3)C8—C9—C10A—C11A40.6 (8)
C2—C1—C6—C50.6 (3)C10B—C9—C10A—C11A−46.8 (11)
C2—C1—C6—C7−179.34 (19)C9—C10A—C11A—C12−59.6 (9)
N1—C5—C6—C1179.87 (15)C8—C9—C10B—C11B−43.8 (11)
C4—C5—C6—C1−0.4 (3)C10A—C9—C10B—C11B57.5 (12)
N1—C5—C6—C7−0.20 (18)C9—C10B—C11B—C1261.8 (14)
C4—C5—C6—C7179.48 (17)C10B—C11B—C12—C7−42.9 (10)
C1—C6—C7—C8179.52 (19)C10B—C11B—C12—C11A51.4 (8)
C5—C6—C7—C8−0.39 (18)C8—C7—C12—C11B14.2 (5)
C1—C6—C7—C121.6 (3)C6—C7—C12—C11B−168.1 (5)
C5—C6—C7—C12−178.35 (17)C8—C7—C12—C11A−17.0 (4)
C6—C7—C8—N10.84 (19)C6—C7—C12—C11A160.7 (3)
C12—C7—C8—N1178.98 (16)C10A—C11A—C12—C11B−51.7 (7)
C6—C7—C8—C9−177.92 (18)C10A—C11A—C12—C745.1 (7)
C12—C7—C8—C90.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Cg2i0.862.623.327 (1)140
C4—H4···Cg1i0.932.863.645 (1)143
C12—H12B···Cg2ii0.972.833.577 (2)135
C12—H12D···Cg2ii0.962.723.577 (2)149

Symmetry codes: (i) x+1/2, −y+3/2, −z+2; (ii) x−1/2, −y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2708).

References

  • Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Farnsworth, chs. 7 and 8. New York: Marcel Decker.
  • Arulmozhi, R., Vennila, J. P., Babu, S. M., Kavitha, H. P. & Manivannan, V. (2008). Acta Cryst. E64, o1208. [PMC free article] [PubMed]
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hewlins, J. M. E., Oliveira-Campos, A. M. & Shannon, P. V. R. (1984). Synthesis, pp. 289–302.
  • Kansal, V. K. & Potier, P. (1986). Tetrahedron, 42, 2389–2408.
  • Mi, B. X., Wang, P. F., Liu, M. W., Kwong, H. L., Wong, N. B., Lee, C. S. & Lee, S. T. (2003). Chem. Mater.15, 3148–3151.
  • Mohanakrishnan, A. K. & Srinivasan, P. C. (1995a). Indian J. Chem. Sect. B, 35, 838–841.
  • Mohanakrishnan, A. K. & Srinivasan, P. C. (1995b). J. Org. Chem.60, 1939–1946.
  • Phillipson, J. D. & Zenk, M. H. (1980). Editors. Indole and Biogenitically Related Alkaloids, ch. 3. New York: Academic Press.
  • Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography