PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2424.
Published online 2008 November 22. doi:  10.1107/S1600536808038695
PMCID: PMC2960077

(E)-N′-(5-Chloro-2-hydroxy­benzyl­idene)-p-toluene­sulfonohydrazide

Abstract

The title compound, C14H13ClN2O3S, features an intra­molecular O—H(...)N hydrogen bond which generates an S(6) ring motif. Inter­molecular N—H(...)O hydrogen bonds and C—H(...)O close contacts link neighbouring mol­ecules forming R 2 2(13) ring motifs. In the crystal structure, mol­ecules are further linked by C—H(...)Cl inter­actions, forming one-dimensional extended chains along the c axis. The dihedral angle between the two benzene rings is 86.06 (3)°. The crystal structure is further stabilized by weak inter­molecular π–π inter­actions [inter­planar stacking distance = 3.357 (7) Å].

Related literature

For related structures and applications, see, for example: Kayser et al. (2004 [triangle]); Tierney et al. (2006 [triangle]); Tabatabaee et al. (2007 [triangle]); Ali et al. (2007 [triangle]); Mehrabi et al. (2008 [triangle]); Kia et al. (2008 [triangle]). For the values of bond lengths, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2424-scheme1.jpg

Experimental

Crystal data

  • C14H13ClN2O3S
  • M r = 324.78
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2424-efi1.jpg
  • a = 15.7454 (3) Å
  • b = 9.8338 (2) Å
  • c = 9.8455 (2) Å
  • β = 105.941 (1)°
  • V = 1465.83 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 100.0 (1) K
  • 0.45 × 0.38 × 0.31 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.836, T max = 0.883
  • 16498 measured reflections
  • 5274 independent reflections
  • 4761 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.093
  • S = 1.10
  • 5274 reflections
  • 199 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038695/pk2133sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038695/pk2133Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support.

supplementary crystallographic information

Comment

Sulfonamides were the first class of antimicrobial agents to be discovered. Sulfonamides (sulfanilamide, sulfamethoxazole, sulfafurazole) are structural analogues of p-aminobenzoic acid (PABA) and compete with PABA to block its conversion to dihydrofolic acid (Kayser et al., 2004). These agents are generally used in combination with other drugs (usually sulfonamides) to prevent or treat a number of bacterial and parasitic infections (Tierney et al., 2006). With regard to all of the above important features, we report the crystal structure of the title compound.

The title compund (Fig. I), is a novel sulfonamide derivative. Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable with those in related structures (Kia et al., 2008; Mehrabi et al., 2008; Ali et al. 2007). An intramolecular O—H···N hydrogen bond generates S(6) ring motif, and the molecule adopts a 'vault' shape. Intermolecular N—H···O and C—H···O interactions link neighbouring molecules by R22(13) ring motifs. The two benzene rings make a dihedral angle of 86.06 (3)°. In the crystal structure, molecules are linked together by intermolecular C—H···Cl, N—H···O and C—H···O interactions, forming one-dimensional extended chains along the c axis. The crystal structure is further stabilized by weak intermolecular π-π interactions [interplanar distance = 3.357 (7) Å].

Experimental

The synthetic method has been described earlier (Kia et al., 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement

The H atoms bound to O1 and N2 were found in a difference Fourier map and refined freely. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model. A rotating group model was used for the methyl hydrogens. The highest residual peak (0.44 e.Å-3) is located 0.66 Å from O2 and the deepest hole (-0.38 e.Å-3) is located 0.57 Å from S1.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme. The intramolecular hydrogen bond is shown as a dashed line.
Fig. 2.
The crystal packing viewed down the b-axis, showing one-dimensional extended chains along the c-axis. Intermolecular interactions are shown as dashed lines.

Crystal data

C14H13ClN2O3SF000 = 672
Mr = 324.78Dx = 1.472 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9969 reflections
a = 15.7454 (3) Åθ = 2.7–36.2º
b = 9.8338 (2) ŵ = 0.41 mm1
c = 9.8455 (2) ÅT = 100.0 (1) K
β = 105.9410 (10)ºBlock, colourless
V = 1465.83 (5) Å30.45 × 0.38 × 0.31 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5274 independent reflections
Radiation source: fine-focus sealed tube4761 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.020
T = 100.0(1) Kθmax = 32.5º
[var phi] and ω scansθmin = 1.3º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −16→23
Tmin = 0.836, Tmax = 0.883k = −11→14
16498 measured reflectionsl = −14→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093  w = 1/[σ2(Fo2) + (0.0458P)2 + 0.5147P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
5274 reflectionsΔρmax = 0.44 e Å3
199 parametersΔρmin = −0.38 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cryosystems Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.694874 (18)0.12795 (3)0.64129 (3)0.03146 (8)
S10.146818 (15)0.24140 (2)0.10615 (2)0.01365 (6)
O10.41411 (6)0.06452 (10)0.11049 (9)0.02515 (17)
O20.17263 (6)0.28771 (8)−0.01531 (8)0.02080 (15)
O30.07539 (5)0.30583 (8)0.14463 (8)0.01865 (14)
N10.31124 (5)0.20818 (9)0.23227 (9)0.01581 (15)
N20.23293 (5)0.26798 (9)0.24403 (9)0.01551 (15)
C10.47774 (7)0.08266 (11)0.23401 (11)0.02019 (19)
C20.56194 (8)0.03165 (13)0.24406 (13)0.0267 (2)
H2A0.5731−0.01210.16700.032*
C30.62907 (8)0.04587 (13)0.36843 (14)0.0277 (2)
H3A0.68500.01130.37510.033*
C40.61217 (7)0.11203 (12)0.48286 (13)0.0234 (2)
C50.52935 (7)0.16436 (11)0.47481 (12)0.02130 (19)
H5A0.51910.20880.55220.026*
C60.46098 (6)0.15033 (10)0.34992 (11)0.01791 (18)
C70.37483 (7)0.20586 (11)0.34673 (11)0.01807 (18)
H7A0.36550.24050.42940.022*
C80.13003 (6)0.06529 (10)0.09358 (10)0.01422 (16)
C90.16949 (7)−0.01247 (11)0.00975 (11)0.01837 (18)
H9A0.20110.0290−0.04600.022*
C100.16103 (7)−0.15310 (11)0.01051 (11)0.01982 (19)
H10A0.1873−0.2056−0.04530.024*
C110.11378 (6)−0.21695 (10)0.09355 (10)0.01714 (17)
C120.07307 (7)−0.13615 (11)0.17433 (11)0.01804 (18)
H12A0.0400−0.17730.22800.022*
C130.08123 (6)0.00428 (10)0.17580 (10)0.01632 (17)
H13A0.05450.05710.23080.020*
C140.10817 (8)−0.36948 (11)0.09768 (13)0.0235 (2)
H14A0.1204−0.40700.01500.035*
H14B0.0499−0.39580.10010.035*
H14C0.1506−0.40300.18050.035*
H1N20.2190 (11)0.2514 (16)0.3232 (17)0.028 (4)*
H1O10.3722 (14)0.093 (2)0.120 (2)0.050 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.01936 (12)0.03239 (16)0.03641 (16)−0.00588 (10)−0.00283 (10)0.01246 (12)
S10.01639 (11)0.01291 (11)0.01269 (10)0.00087 (7)0.00572 (8)0.00034 (7)
O10.0244 (4)0.0326 (5)0.0194 (4)0.0074 (3)0.0076 (3)0.0000 (3)
O20.0311 (4)0.0184 (3)0.0158 (3)0.0000 (3)0.0114 (3)0.0026 (3)
O30.0183 (3)0.0169 (3)0.0220 (3)0.0041 (3)0.0076 (3)−0.0002 (3)
N10.0157 (3)0.0144 (4)0.0188 (4)0.0000 (3)0.0072 (3)−0.0004 (3)
N20.0154 (3)0.0173 (4)0.0151 (3)−0.0003 (3)0.0064 (3)−0.0029 (3)
C10.0208 (4)0.0195 (5)0.0215 (4)0.0030 (4)0.0079 (4)0.0043 (4)
C20.0249 (5)0.0272 (6)0.0307 (5)0.0076 (4)0.0123 (4)0.0047 (4)
C30.0197 (4)0.0264 (6)0.0384 (6)0.0053 (4)0.0101 (4)0.0096 (5)
C40.0170 (4)0.0210 (5)0.0300 (5)−0.0019 (4)0.0026 (4)0.0084 (4)
C50.0191 (4)0.0194 (5)0.0244 (5)−0.0022 (4)0.0042 (4)0.0019 (4)
C60.0170 (4)0.0156 (4)0.0214 (4)−0.0002 (3)0.0059 (3)0.0021 (3)
C70.0181 (4)0.0169 (4)0.0195 (4)−0.0008 (3)0.0057 (3)−0.0020 (3)
C80.0148 (4)0.0136 (4)0.0140 (4)0.0000 (3)0.0036 (3)−0.0005 (3)
C90.0231 (4)0.0164 (4)0.0182 (4)−0.0009 (3)0.0099 (3)−0.0018 (3)
C100.0238 (4)0.0165 (4)0.0207 (4)0.0007 (4)0.0087 (4)−0.0033 (3)
C110.0168 (4)0.0145 (4)0.0179 (4)−0.0004 (3)0.0009 (3)0.0000 (3)
C120.0169 (4)0.0177 (4)0.0201 (4)−0.0017 (3)0.0060 (3)0.0019 (3)
C130.0158 (4)0.0168 (4)0.0176 (4)0.0002 (3)0.0067 (3)−0.0004 (3)
C140.0267 (5)0.0151 (4)0.0265 (5)−0.0005 (4)0.0037 (4)0.0006 (4)

Geometric parameters (Å, °)

Cl1—C41.7429 (12)C5—H5A0.9300
S1—O31.4296 (7)C6—C71.4545 (14)
S1—O21.4386 (7)C7—H7A0.9300
S1—N21.6548 (9)C8—C91.3905 (13)
S1—C81.7512 (10)C8—C131.3954 (13)
O1—C11.3585 (14)C9—C101.3895 (15)
O1—H1O10.75 (2)C9—H9A0.9300
N1—C71.2858 (13)C10—C111.3965 (15)
N1—N21.3994 (11)C10—H10A0.9300
N2—H1N20.881 (17)C11—C121.3982 (15)
C1—C21.3954 (15)C11—C141.5037 (15)
C1—C61.4071 (15)C12—C131.3866 (14)
C2—C31.3875 (18)C12—H12A0.9300
C2—H2A0.9300C13—H13A0.9300
C3—C41.3886 (18)C14—H14A0.9600
C3—H3A0.9300C14—H14B0.9600
C4—C51.3838 (15)C14—H14C0.9600
C5—C61.4010 (14)
O3—S1—O2120.16 (5)C1—C6—C7122.79 (9)
O3—S1—N2103.86 (4)N1—C7—C6121.51 (9)
O2—S1—N2106.09 (5)N1—C7—H7A119.2
O3—S1—C8110.03 (5)C6—C7—H7A119.2
O2—S1—C8109.02 (5)C9—C8—C13120.99 (9)
N2—S1—C8106.73 (4)C9—C8—S1120.16 (7)
C1—O1—H1O1107.2 (16)C13—C8—S1118.73 (7)
C7—N1—N2115.26 (8)C10—C9—C8119.01 (9)
N1—N2—S1114.07 (6)C10—C9—H9A120.5
N1—N2—H1N2115.8 (11)C8—C9—H9A120.5
S1—N2—H1N2110.5 (11)C9—C10—C11121.19 (9)
O1—C1—C2117.97 (10)C9—C10—H10A119.4
O1—C1—C6122.12 (9)C11—C10—H10A119.4
C2—C1—C6119.91 (10)C10—C11—C12118.60 (9)
C3—C2—C1120.33 (11)C10—C11—C14120.60 (10)
C3—C2—H2A119.8C12—C11—C14120.79 (10)
C1—C2—H2A119.8C13—C12—C11121.08 (9)
C2—C3—C4119.61 (10)C13—C12—H12A119.5
C2—C3—H3A120.2C11—C12—H12A119.5
C4—C3—H3A120.2C12—C13—C8119.10 (9)
C5—C4—C3121.01 (11)C12—C13—H13A120.4
C5—C4—Cl1118.60 (10)C8—C13—H13A120.4
C3—C4—Cl1120.38 (9)C11—C14—H14A109.5
C4—C5—C6119.90 (11)C11—C14—H14B109.5
C4—C5—H5A120.0H14A—C14—H14B109.5
C6—C5—H5A120.0C11—C14—H14C109.5
C5—C6—C1119.23 (9)H14A—C14—H14C109.5
C5—C6—C7117.98 (9)H14B—C14—H14C109.5
C7—N1—N2—S1−167.94 (8)C5—C6—C7—N1173.45 (10)
O3—S1—N2—N1177.60 (7)C1—C6—C7—N1−7.19 (16)
O2—S1—N2—N1−54.83 (8)O3—S1—C8—C9155.84 (8)
C8—S1—N2—N161.33 (8)O2—S1—C8—C922.10 (10)
O1—C1—C2—C3−179.18 (11)N2—S1—C8—C9−92.09 (8)
C6—C1—C2—C30.77 (17)O3—S1—C8—C13−28.14 (9)
C1—C2—C3—C4−0.41 (18)O2—S1—C8—C13−161.88 (8)
C2—C3—C4—C5−0.12 (18)N2—S1—C8—C1383.93 (8)
C2—C3—C4—Cl1178.67 (9)C13—C8—C9—C10−1.10 (15)
C3—C4—C5—C60.28 (17)S1—C8—C9—C10174.83 (8)
Cl1—C4—C5—C6−178.53 (8)C8—C9—C10—C110.05 (16)
C4—C5—C6—C10.08 (16)C9—C10—C11—C121.41 (16)
C4—C5—C6—C7179.47 (10)C9—C10—C11—C14−177.60 (10)
O1—C1—C6—C5179.34 (10)C10—C11—C12—C13−1.86 (15)
C2—C1—C6—C5−0.60 (16)C14—C11—C12—C13177.14 (10)
O1—C1—C6—C7−0.01 (16)C11—C12—C13—C80.84 (15)
C2—C1—C6—C7−179.95 (10)C9—C8—C13—C120.66 (15)
N2—N1—C7—C6−178.29 (9)S1—C8—C13—C12−175.32 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.75 (2)2.00 (2)2.6690 (13)149 (2)
N2—H1N2···O2i0.881 (16)1.961 (17)2.8375 (12)172.8 (17)
C7—H7A···O1i0.932.593.3679 (14)142
C10—H10A···Cl1ii0.932.823.7256 (12)164
C12—H12A···O3iii0.932.483.3549 (14)157

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2133).

References

  • Ali, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1617–o1618.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1–20. Berlin: Thieme Medical.
  • Kia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2341. [PMC free article] [PubMed]
  • Mehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Tabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099–o2100.
  • Tierney, L. M. Jr, McPhee, S. J. & Papadakis, M. A. (2006). Current Medical Diagnosis & Treatment, 45th ed., pp. 1–50. New York: McGraw-Hill Medical.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography