PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2494.
Published online 2008 November 29. doi:  10.1107/S1600536808039858
PMCID: PMC2960073

2,2′-[Nonane-1,9-diylbis(nitrilo­methyl­idyne)]diphenol

Abstract

In the title Schiff base compound, C23H30N2O2, the complete mol­ecule is generated by crystallographic twofold symmetry, with one C atom lying on the rotation axis. The nonane chain adopts a linear conformation and the hydr­oxy group forms an intra­molecular O—H(...)N hydrogen bond to the imine group.

Related literature

For the effect of alkyl length on the optical properties of 2,2′-[alkyl-1,9-diylbis(nitrilo­methyl­idyne)]diphenols, see: Kawasaki et al. (1996 [triangle], 1999 [triangle]). For the reduction of the Schiff base to the secondary diamine, see: Csaszar (1984 [triangle]). For the structure of 2,2′-[hexane-1,6-diylbis(nitrilo­methyl­idyne)]diphenol, see: Sheikhshoaie & Sharif (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2494-scheme1.jpg

Experimental

Crystal data

  • C23H30N2O2
  • M r = 366.49
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2494-efi1.jpg
  • a = 43.6905 (10) Å
  • b = 4.7258 (1) Å
  • c = 9.8928 (2) Å
  • β = 96.935 (2)°
  • V = 2027.65 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 (2) K
  • 0.40 × 0.03 × 0.02 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: none
  • 8930 measured reflections
  • 2317 independent reflections
  • 1573 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.177
  • S = 1.10
  • 2317 reflections
  • 127 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039858/hb2862sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039858/hb2862Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Fundamental Research Grant Scheme of the Ministry of Higher Education for supporting this study.

supplementary crystallographic information

Comment

For more details, see the Abstract. For the molecular structure, see Fig. 1. and for details of hydrogen bonding, see Table 1.

Experimental

Salicylaldehyde (0.050 mol, 6.1 g) and sodium hydroxide (0.05 mol, 2.0 g) in methanol (125 ml) was added to 1,9-diaminononane (0.025 mol, 3.9 g) in methanol (125 ml). The solution was heated for 1 h. The solvent was evaporated and the product recrystallized from ethanol to yield yellow plates of (I). The rod used for data collection was cut from a plate.

Refinement

The C-bound hydrogen atoms were placed at calculated positions (C–H = 0.95—0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The hydroxy H-atom was located in a difference Fourier map and was refined with a distance restraint of O–H = 0.84±0.01 Å.

Figures

Fig. 1.
View of the molecular structure of (I) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The unlabelled atoms are generated by the symmetry operation (1–x, y, 1/2–z).

Crystal data

C23H30N2O2F000 = 792
Mr = 366.49Dx = 1.201 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2058 reflections
a = 43.6905 (10) Åθ = 2.8–27.9º
b = 4.7258 (1) ŵ = 0.08 mm1
c = 9.8928 (2) ÅT = 100 (2) K
β = 96.935 (2)ºRod, yellow
V = 2027.65 (8) Å30.40 × 0.03 × 0.02 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer1573 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Monochromator: graphiteθmax = 27.5º
T = 100(2) Kθmin = 0.9º
ω scansh = −56→56
Absorption correction: Nonek = −6→6
8930 measured reflectionsl = −12→12
2317 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.177  w = 1/[σ2(Fo2) + (0.1065P)2] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2317 reflectionsΔρmax = 0.25 e Å3
127 parametersΔρmin = −0.23 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.63065 (3)0.8920 (3)0.86876 (12)0.0364 (4)
H10.6186 (5)0.787 (5)0.816 (2)0.075 (8)*
N10.61425 (3)0.4953 (3)0.69663 (13)0.0283 (4)
C10.66008 (4)0.8348 (4)0.84965 (15)0.0300 (4)
C20.68388 (4)0.9845 (4)0.92417 (17)0.0382 (5)
H20.67931.12510.98740.046*
C30.71405 (4)0.9284 (4)0.90596 (19)0.0410 (5)
H30.73021.03030.95770.049*
C40.72134 (4)0.7262 (4)0.81367 (19)0.0388 (5)
H40.74220.69160.80090.047*
C50.69785 (4)0.5759 (4)0.74073 (18)0.0344 (4)
H50.70270.43580.67790.041*
C60.66712 (4)0.6252 (3)0.75711 (15)0.0281 (4)
C70.64264 (4)0.4541 (4)0.68374 (15)0.0282 (4)
H70.64800.30820.62490.034*
C80.59137 (4)0.3110 (4)0.62109 (16)0.0295 (4)
H8A0.57920.21400.68540.035*
H8B0.60200.16490.57200.035*
C90.56994 (4)0.4833 (4)0.51955 (16)0.0290 (4)
H9A0.55900.62500.56960.035*
H9B0.58240.58670.45840.035*
C100.54637 (4)0.2996 (4)0.43422 (16)0.0295 (4)
H10A0.53510.18450.49570.035*
H10B0.55730.16830.37860.035*
C110.52325 (3)0.4723 (4)0.34047 (16)0.0278 (4)
H11A0.53470.59290.28180.033*
H11B0.51190.59900.39680.033*
C120.50000.2941 (5)0.25000.0291 (5)
H12A0.48880.17070.30820.035*0.50
H12B0.51120.17070.19180.035*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0363 (8)0.0429 (8)0.0299 (7)0.0016 (6)0.0041 (5)−0.0045 (5)
N10.0256 (8)0.0366 (8)0.0213 (7)0.0014 (6)−0.0026 (5)0.0018 (6)
C10.0343 (10)0.0354 (9)0.0194 (7)0.0001 (7)−0.0007 (7)0.0058 (7)
C20.0489 (12)0.0379 (10)0.0259 (8)−0.0070 (8)−0.0036 (8)0.0002 (8)
C30.0395 (11)0.0436 (11)0.0361 (10)−0.0118 (8)−0.0115 (8)0.0069 (8)
C40.0286 (10)0.0441 (11)0.0415 (10)−0.0031 (8)−0.0053 (8)0.0083 (8)
C50.0307 (10)0.0396 (10)0.0318 (9)0.0013 (7)−0.0006 (7)0.0039 (7)
C60.0298 (9)0.0331 (9)0.0204 (7)0.0006 (7)−0.0018 (6)0.0055 (6)
C70.0281 (9)0.0352 (9)0.0204 (7)0.0029 (7)−0.0008 (6)0.0019 (6)
C80.0251 (9)0.0352 (9)0.0269 (8)0.0007 (7)−0.0017 (7)0.0005 (7)
C90.0238 (9)0.0354 (9)0.0266 (8)0.0014 (7)−0.0018 (7)0.0002 (7)
C100.0238 (9)0.0334 (9)0.0302 (8)0.0020 (6)−0.0012 (7)−0.0005 (7)
C110.0231 (8)0.0332 (9)0.0265 (8)0.0013 (6)0.0005 (6)−0.0006 (6)
C120.0230 (12)0.0327 (12)0.0306 (11)0.000−0.0010 (9)0.000

Geometric parameters (Å, °)

O1—C11.349 (2)C8—C91.524 (2)
O1—H10.86 (1)C8—H8A0.9900
N1—C71.277 (2)C8—H8B0.9900
N1—C81.461 (2)C9—C101.522 (2)
C1—C21.393 (2)C9—H9A0.9900
C1—C61.408 (2)C9—H9B0.9900
C2—C31.377 (3)C10—C111.523 (2)
C2—H20.9500C10—H10A0.9900
C3—C41.385 (3)C10—H10B0.9900
C3—H30.9500C11—C121.524 (2)
C4—C51.378 (2)C11—H11A0.9900
C4—H40.9500C11—H11B0.9900
C5—C61.391 (2)C12—C11i1.524 (2)
C5—H50.9500C12—H12A0.9900
C6—C71.462 (2)C12—H12B0.9900
C7—H70.9500
C1—O1—H1109.1 (19)C9—C8—H8B109.6
C7—N1—C8118.06 (14)H8A—C8—H8B108.1
O1—C1—C2119.15 (16)C10—C9—C8112.43 (14)
O1—C1—C6121.25 (15)C10—C9—H9A109.1
C2—C1—C6119.60 (16)C8—C9—H9A109.1
C3—C2—C1119.86 (17)C10—C9—H9B109.1
C3—C2—H2120.1C8—C9—H9B109.1
C1—C2—H2120.1H9A—C9—H9B107.9
C2—C3—C4121.26 (17)C9—C10—C11112.75 (14)
C2—C3—H3119.4C9—C10—H10A109.0
C4—C3—H3119.4C11—C10—H10A109.0
C5—C4—C3118.99 (18)C9—C10—H10B109.0
C5—C4—H4120.5C11—C10—H10B109.0
C3—C4—H4120.5H10A—C10—H10B107.8
C4—C5—C6121.38 (17)C10—C11—C12114.05 (15)
C4—C5—H5119.3C10—C11—H11A108.7
C6—C5—H5119.3C12—C11—H11A108.7
C5—C6—C1118.89 (15)C10—C11—H11B108.7
C5—C6—C7120.52 (15)C12—C11—H11B108.7
C1—C6—C7120.54 (15)H11A—C11—H11B107.6
N1—C7—C6121.81 (15)C11—C12—C11i112.9 (2)
N1—C7—H7119.1C11—C12—H12A109.0
C6—C7—H7119.1C11i—C12—H12A109.0
N1—C8—C9110.26 (14)C11—C12—H12B109.0
N1—C8—H8A109.6C11i—C12—H12B109.0
C9—C8—H8A109.6H12A—C12—H12B107.8
N1—C8—H8B109.6
O1—C1—C2—C3179.92 (15)C2—C1—C6—C7176.40 (14)
C6—C1—C2—C30.6 (2)C8—N1—C7—C6−179.01 (14)
C1—C2—C3—C40.5 (3)C5—C6—C7—N1−179.81 (16)
C2—C3—C4—C5−1.1 (3)C1—C6—C7—N12.8 (2)
C3—C4—C5—C60.6 (3)C7—N1—C8—C9−117.30 (16)
C4—C5—C6—C10.5 (2)N1—C8—C9—C10177.84 (13)
C4—C5—C6—C7−176.97 (15)C8—C9—C10—C11175.42 (14)
O1—C1—C6—C5179.62 (14)C9—C10—C11—C12177.98 (12)
C2—C1—C6—C5−1.0 (2)C10—C11—C12—C11i178.76 (15)
O1—C1—C6—C7−3.0 (2)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (1)1.81 (2)2.5755 (19)148 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2862).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Csaszar, J. (1984). Acta Phys. Chem.30, 61.
  • Kawasaki, T., Kamata, T., Ushijima, H., Kanakubo, M., Murata, S., Mizukami, F., Fujii, Y. & Usui, Y. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 193–198.
  • Kawasaki, T., Kamata, T., Ushijima, H., Murata, S., Mizukami, F., Fujii, Y. & Usui, Y. (1996). Mol. Cryst. Liq. Cryst.286, 579–584.
  • Sheikhshoaie, I. & Sharif, M. A. (2006). Acta Cryst. E62, o3563–o3565.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography