PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1590.
Published online 2008 November 22. doi:  10.1107/S1600536808037999
PMCID: PMC2960067

Poly[[(μ3-5,6-dicarboxy­bicyclo­[2.2.2]oct-7-ene-2,3-dicarboxyl­ato)(1,10-phenanthroline)copper(II)] monohydrate]

Abstract

In the title compound, {[Cu(C12H10O8)(C12H8N2)]·H2O}n, the CuII ion is five-coordinated by two N atoms from one phenanthroline ligand and three O atoms from three different H2 L 2− anions (H4 L is bicyclo­[2.2.2]oct-7-ene-2,3,5,6-tetra­carboxylic acid) in a distorted square-pyramidal geometry. Each H2 L 2− ion bridges three CuII atoms to form a zigzag sheet parallel to the ab plane. The crystal structure is consolidated by O—H(...)O hydrogen bonds.

Related literature

For general background, see: Yang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1590-scheme1.jpg

Experimental

Crystal data

  • [Cu(C12H10O8)(C12H8N2)]·H2O
  • M r = 543.96
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1590-efi2.jpg
  • a = 6.5900 (4) Å
  • b = 15.1650 (8) Å
  • c = 10.7490 (6) Å
  • β = 95.244 (9)°
  • V = 1069.73 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.08 mm−1
  • T = 293 (2) K
  • 0.33 × 0.21 × 0.20 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.696, T max = 0.803
  • 6580 measured reflections
  • 4555 independent reflections
  • 4343 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.065
  • S = 1.04
  • 4555 reflections
  • 333 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.37 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1914 Friedel pairs
  • Flack parameter: 0.008 (8)

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT (Bruker, 1998 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037999/ci2718sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037999/ci2718Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Science Foundation for Young Teachers of Northeast Normal University (grant Nos. 20080305 and 20080304) for financial support.

supplementary crystallographic information

Comment

Coordination polymers based on poly(carboxylic acids) have been investigated in the area of solid state and material science (Yang et al., 2008). We selected bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic acid (H4L) as a poly(carboxylic acid) ligand and phenanthroline (phen) as a secondary ligand, generating a new coordination polymer, [Cu(phen)(H2L)].H2O, which is reported here.

In the title compound, each CuII atom is five-coordinated by two N atoms from one phen ligand, and three O atoms from three different H2L2- anions in a distorted square-pyramidal geometry (Fig. 1 and Table 1). Each H2L2- bridges three CuII atoms to form a two-dimensional layer structure (Fig. 2). The O–H···O hydrogen bonds (Table 2) further consolidate the crystal structure.

Experimental

A mixture of H4L (0.5 mmol), phen (0.5 mmol), NaOH (1 mmol) and CuCl2.2H2O (0.5 mmol) was suspended in deionized water (12 ml) and sealed in a 20-ml Teflon-lined autoclave. The mixture was heated at 373 K for 7 d and then the autoclave was slowly cooled to room temperature. The grown single crystals were collected, washed with deionized water and dried.

Refinement

H atoms on C atoms were generated geometrically and refined as riding atoms with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C). The H atoms of the water molecules were located in a difference Fourier map and refined with an O—H distance restraint of 0.85 (1) Å and with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
Part of the polymeric structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) x - 1, y, z; (ii) 2 - x, y - 1/2, 2 - z.
Fig. 2.
View of a zigzag sheet structure in the title compound.

Crystal data

[Cu(C12H10O8)(C12H8N2)]·H2OF000 = 558
Mr = 543.96Dx = 1.689 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71069 Å
Hall symbol: P 2ybCell parameters from 4555 reflections
a = 6.5900 (4) Åθ = 1.1–28.4º
b = 15.1650 (8) ŵ = 1.08 mm1
c = 10.7490 (6) ÅT = 293 K
β = 95.244 (9)ºBlock, blue
V = 1069.73 (10) Å30.33 × 0.21 × 0.20 mm
Z = 2

Data collection

Bruker APEX CCD area-detector diffractometer4555 independent reflections
Radiation source: fine-focus sealed tube4343 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.022
T = 293 Kθmax = 28.4º
[var phi] and ω scansθmin = 2.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.696, Tmax = 0.803k = −19→17
6580 measured reflectionsl = −6→14

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026  w = 1/[σ2(Fo2) + (0.0256P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.31 e Å3
4555 reflectionsΔρmin = −0.37 e Å3
333 parametersExtinction correction: none
2 restraintsAbsolute structure: Flack (1983), 1914 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.008 (8)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.8692 (4)0.81993 (17)0.5050 (2)0.0327 (5)
H10.95360.84450.57000.039*
C20.9222 (4)0.82867 (19)0.3826 (2)0.0382 (6)
H21.04080.85830.36690.046*
C30.7992 (4)0.79351 (17)0.2862 (2)0.0362 (6)
H30.83410.79900.20470.043*
C40.6199 (3)0.74901 (17)0.31010 (18)0.0285 (5)
C50.4749 (4)0.71054 (18)0.2161 (2)0.0352 (6)
H5A0.49720.71560.13220.042*
C60.3084 (4)0.66765 (18)0.2479 (2)0.0361 (6)
H60.21860.64340.18530.043*
C70.2660 (4)0.65841 (16)0.3763 (2)0.0291 (5)
C80.1009 (4)0.61105 (18)0.4178 (2)0.0364 (6)
H8B0.00830.58280.36060.044*
C90.0779 (4)0.60707 (19)0.5428 (2)0.0377 (6)
H9−0.03010.57580.57110.045*
C100.2174 (4)0.65023 (17)0.6279 (2)0.0329 (5)
H100.19950.64730.71270.039*
C110.4003 (3)0.69806 (15)0.46831 (19)0.0240 (4)
C120.5789 (3)0.74318 (14)0.43543 (18)0.0237 (5)
C131.0048 (3)0.90548 (13)0.94151 (18)0.0192 (4)
H130.92890.88141.00800.023*
C141.0387 (3)1.00356 (15)0.97408 (18)0.0223 (4)
H140.91591.03820.94970.027*
C151.0971 (3)1.00950 (14)1.11723 (18)0.0220 (4)
H150.97820.99191.15980.026*
C161.2682 (3)0.94109 (14)1.14952 (18)0.0211 (4)
H161.19930.88731.17360.025*
C171.3679 (3)0.91758 (15)1.02845 (19)0.0229 (4)
H171.49900.88791.04790.027*
C181.2122 (3)0.85576 (14)0.95247 (18)0.0203 (4)
H181.19780.80141.00020.024*
C191.3913 (3)0.99816 (16)0.94838 (19)0.0288 (5)
H191.51661.01680.92460.035*
C201.2195 (4)1.03987 (15)0.91496 (19)0.0268 (5)
H201.21081.08730.86000.032*
C210.8703 (3)0.88961 (15)0.82048 (19)0.0208 (4)
C221.2984 (3)0.83259 (15)0.82983 (19)0.0237 (4)
C231.4200 (4)0.96369 (15)1.2593 (2)0.0265 (5)
C241.1515 (3)1.10347 (15)1.1550 (2)0.0240 (5)
N10.7020 (3)0.77771 (12)0.53121 (15)0.0253 (4)
N20.3738 (3)0.69509 (13)0.59172 (16)0.0251 (4)
O10.7941 (3)0.95074 (11)0.75885 (15)0.0331 (4)
O20.8349 (2)0.80701 (10)0.79532 (13)0.0256 (3)
O1W1.4570 (4)0.98510 (18)1.59374 (17)0.0537 (6)
O31.4401 (2)0.77476 (12)0.84210 (14)0.0323 (4)
O41.2381 (2)0.86940 (12)0.73066 (14)0.0323 (4)
O51.3290 (3)0.95633 (14)1.36461 (15)0.0406 (4)
H51.41050.96851.42440.061*
O61.5975 (3)0.97879 (13)1.25429 (17)0.0402 (4)
O71.2819 (3)1.12253 (12)1.23587 (16)0.0358 (4)
O81.0345 (3)1.16299 (13)1.09436 (17)0.0443 (5)
H81.07031.21251.11810.066*
Cu10.59195 (3)0.760541 (17)0.697564 (19)0.02264 (7)
HW111.378 (5)0.952 (2)1.625 (3)0.050 (10)*
HW121.575 (4)0.969 (3)1.613 (4)0.078 (14)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0300 (12)0.0339 (14)0.0336 (12)−0.0050 (11)0.0001 (10)0.0004 (10)
C20.0364 (14)0.0379 (15)0.0413 (13)−0.0056 (12)0.0101 (11)0.0070 (11)
C30.0433 (15)0.0387 (14)0.0276 (11)0.0050 (11)0.0095 (10)0.0068 (9)
C40.0351 (11)0.0263 (13)0.0238 (9)0.0057 (11)0.0014 (8)0.0009 (9)
C50.0486 (16)0.0344 (15)0.0218 (10)0.0106 (11)−0.0018 (10)−0.0044 (9)
C60.0425 (15)0.0343 (14)0.0292 (11)0.0029 (12)−0.0098 (10)−0.0086 (10)
C70.0311 (12)0.0253 (12)0.0300 (11)0.0023 (10)−0.0023 (9)−0.0075 (9)
C80.0286 (12)0.0344 (14)0.0446 (14)−0.0020 (11)−0.0059 (10)−0.0113 (10)
C90.0314 (13)0.0350 (15)0.0465 (14)−0.0084 (11)0.0030 (11)−0.0058 (11)
C100.0318 (13)0.0335 (14)0.0339 (12)−0.0055 (11)0.0066 (10)−0.0044 (10)
C110.0260 (11)0.0210 (11)0.0244 (10)0.0044 (9)−0.0014 (8)−0.0037 (8)
C120.0270 (10)0.0196 (13)0.0240 (9)0.0042 (8)−0.0003 (8)−0.0017 (7)
C130.0199 (10)0.0184 (11)0.0194 (9)−0.0018 (8)0.0014 (8)−0.0009 (7)
C140.0236 (11)0.0192 (10)0.0229 (10)0.0006 (9)−0.0049 (8)−0.0024 (8)
C150.0198 (10)0.0224 (11)0.0236 (10)−0.0003 (8)−0.0002 (8)−0.0015 (8)
C160.0233 (10)0.0187 (10)0.0208 (9)−0.0020 (8)−0.0007 (8)−0.0015 (7)
C170.0175 (10)0.0259 (12)0.0247 (10)0.0002 (9)−0.0007 (8)−0.0037 (8)
C180.0199 (10)0.0215 (11)0.0190 (9)0.0006 (8)−0.0004 (7)−0.0012 (7)
C190.0284 (12)0.0312 (13)0.0276 (11)−0.0119 (10)0.0062 (9)−0.0042 (9)
C200.0357 (12)0.0215 (11)0.0223 (10)−0.0076 (10)−0.0026 (9)0.0017 (8)
C210.0182 (10)0.0220 (12)0.0216 (10)−0.0008 (9)−0.0006 (8)−0.0013 (8)
C220.0212 (10)0.0254 (12)0.0248 (10)−0.0034 (8)0.0036 (8)−0.0029 (8)
C230.0330 (13)0.0197 (11)0.0256 (10)0.0030 (9)−0.0043 (9)0.0010 (8)
C240.0238 (11)0.0221 (12)0.0262 (11)0.0028 (9)0.0031 (9)−0.0032 (8)
N10.0252 (9)0.0254 (12)0.0251 (8)−0.0010 (8)0.0008 (7)−0.0022 (7)
N20.0242 (9)0.0245 (10)0.0264 (9)0.0010 (8)0.0006 (7)−0.0030 (7)
O10.0381 (10)0.0263 (9)0.0323 (9)0.0023 (8)−0.0117 (7)0.0020 (7)
O20.0265 (8)0.0205 (8)0.0283 (7)−0.0040 (7)−0.0051 (6)−0.0019 (6)
O1W0.0514 (14)0.0778 (17)0.0291 (9)−0.0253 (13)−0.0121 (9)0.0156 (10)
O30.0290 (8)0.0397 (12)0.0282 (7)0.0106 (8)0.0033 (6)−0.0084 (7)
O40.0349 (9)0.0392 (10)0.0225 (7)0.0009 (8)0.0016 (6)0.0024 (7)
O50.0447 (10)0.0543 (13)0.0211 (7)−0.0153 (9)−0.0054 (7)−0.0004 (7)
O60.0254 (9)0.0509 (13)0.0424 (10)0.0001 (8)−0.0069 (7)−0.0105 (8)
O70.0387 (10)0.0224 (9)0.0427 (10)0.0004 (7)−0.0164 (8)−0.0049 (7)
O80.0502 (11)0.0249 (10)0.0528 (11)0.0103 (9)−0.0222 (9)−0.0094 (8)
Cu10.02218 (12)0.02490 (13)0.02043 (10)−0.00053 (12)−0.00032 (8)−0.00387 (11)

Geometric parameters (Å, °)

C1—N11.326 (3)C15—C161.548 (3)
C1—C21.398 (3)C15—H150.98
C1—H10.93C16—C231.515 (3)
C2—C31.364 (4)C16—C171.552 (3)
C2—H20.93C16—H160.98
C3—C41.405 (4)C17—C191.511 (3)
C3—H30.93C17—C181.564 (3)
C4—C121.401 (3)C17—H170.98
C4—C51.448 (3)C18—C221.523 (3)
C5—C61.346 (4)C18—H180.98
C5—H5A0.93C19—C201.318 (3)
C6—C71.440 (3)C19—H190.93
C6—H60.93C20—H200.93
C7—C111.401 (3)C21—O11.220 (3)
C7—C81.410 (3)C21—O21.298 (3)
C8—C91.367 (3)C22—O41.236 (3)
C8—H8B0.93C22—O31.279 (3)
C9—C101.399 (3)C23—O61.198 (3)
C9—H90.93C23—O51.334 (3)
C10—N21.323 (3)C24—O71.200 (3)
C10—H100.93C24—O81.320 (3)
C11—N21.354 (3)N1—Cu12.0072 (17)
C11—C121.434 (3)N2—Cu12.0119 (19)
C12—N11.356 (3)O2—Cu11.9640 (15)
C13—C211.525 (3)O1W—HW110.82 (3)
C13—C141.540 (3)O1W—HW120.822 (19)
C13—C181.556 (3)O3—Cu1i1.9355 (15)
C13—H130.98O5—H50.82
C14—C201.505 (3)O7—Cu1ii2.3398 (18)
C14—C151.554 (3)O8—H80.82
C14—H140.98Cu1—O3iii1.9355 (15)
C15—C241.516 (3)Cu1—O7iv2.3398 (18)
N1—C1—C2122.0 (2)C15—C16—C17108.75 (16)
N1—C1—H1119.0C23—C16—H16105.8
C2—C1—H1119.0C15—C16—H16105.8
C3—C2—C1119.7 (2)C17—C16—H16105.8
C3—C2—H2120.2C19—C17—C16111.41 (18)
C1—C2—H2120.2C19—C17—C18106.48 (17)
C2—C3—C4120.0 (2)C16—C17—C18105.53 (16)
C2—C3—H3120.0C19—C17—H17111.1
C4—C3—H3120.0C16—C17—H17111.1
C12—C4—C3116.4 (2)C18—C17—H17111.1
C12—C4—C5118.2 (2)C22—C18—C13116.14 (16)
C3—C4—C5125.3 (2)C22—C18—C17108.15 (17)
C6—C5—C4121.3 (2)C13—C18—C17106.20 (16)
C6—C5—H5A119.4C22—C18—H18108.7
C4—C5—H5A119.4C13—C18—H18108.7
C5—C6—C7121.6 (2)C17—C18—H18108.7
C5—C6—H6119.2C20—C19—C17114.4 (2)
C7—C6—H6119.2C20—C19—H19122.8
C11—C7—C8116.8 (2)C17—C19—H19122.8
C11—C7—C6118.0 (2)C19—C20—C14113.8 (2)
C8—C7—C6125.2 (2)C19—C20—H20123.1
C9—C8—C7119.4 (2)C14—C20—H20123.1
C9—C8—H8B120.3O1—C21—O2124.26 (19)
C7—C8—H8B120.3O1—C21—C13121.4 (2)
C8—C9—C10119.8 (2)O2—C21—C13114.15 (18)
C8—C9—H9120.1O4—C22—O3124.92 (19)
C10—C9—H9120.1O4—C22—C18121.8 (2)
N2—C10—C9122.1 (2)O3—C22—C18113.28 (18)
N2—C10—H10119.0O6—C23—O5124.8 (2)
C9—C10—H10119.0O6—C23—C16125.9 (2)
N2—C11—C7123.2 (2)O5—C23—C16109.01 (19)
N2—C11—C12116.08 (19)O7—C24—O8122.7 (2)
C7—C11—C12120.70 (19)O7—C24—C15123.8 (2)
N1—C12—C4123.4 (2)O8—C24—C15113.40 (19)
N1—C12—C11116.42 (17)C1—N1—C12118.41 (18)
C4—C12—C11120.14 (19)C1—N1—Cu1128.81 (15)
C21—C13—C14114.04 (17)C12—N1—Cu1112.72 (14)
C21—C13—C18115.24 (16)C10—N2—C11118.6 (2)
C14—C13—C18110.05 (17)C10—N2—Cu1128.54 (16)
C21—C13—H13105.5C11—N2—Cu1112.83 (15)
C14—C13—H13105.5C21—O2—Cu1125.43 (14)
C18—C13—H13105.5HW11—O1W—HW12109 (4)
C20—C14—C13111.19 (17)C22—O3—Cu1i114.82 (14)
C20—C14—C15105.24 (17)C23—O5—H5109.5
C13—C14—C15107.38 (17)C24—O7—Cu1ii130.37 (16)
C20—C14—H14110.9C24—O8—H8109.5
C13—C14—H14110.9O3iii—Cu1—O289.24 (7)
C15—C14—H14110.9O3iii—Cu1—N1162.98 (7)
C24—C15—C16114.85 (17)O2—Cu1—N194.97 (7)
C24—C15—C14110.54 (18)O3iii—Cu1—N296.53 (7)
C16—C15—C14107.01 (16)O2—Cu1—N2170.11 (7)
C24—C15—H15108.1N1—Cu1—N281.84 (7)
C16—C15—H15108.1O3iii—Cu1—O7iv92.84 (7)
C14—C15—H15108.1O2—Cu1—O7iv84.71 (6)
C23—C16—C15116.02 (18)N1—Cu1—O7iv103.96 (7)
C23—C16—C17113.89 (18)N2—Cu1—O7iv86.97 (7)
N1—C1—C2—C30.4 (4)C15—C14—C20—C1957.3 (2)
C1—C2—C3—C40.2 (4)C14—C13—C21—O1−1.8 (3)
C2—C3—C4—C12−0.3 (4)C18—C13—C21—O1−130.5 (2)
C2—C3—C4—C5178.6 (2)C14—C13—C21—O2−177.45 (17)
C12—C4—C5—C6−2.2 (4)C18—C13—C21—O253.9 (2)
C3—C4—C5—C6178.8 (3)C13—C18—C22—O417.8 (3)
C4—C5—C6—C70.4 (4)C17—C18—C22—O4−101.4 (2)
C5—C6—C7—C112.0 (4)C13—C18—C22—O3−164.32 (18)
C5—C6—C7—C8−176.8 (3)C17—C18—C22—O376.5 (2)
C11—C7—C8—C90.9 (4)C15—C16—C23—O6−114.2 (3)
C6—C7—C8—C9179.8 (2)C17—C16—C23—O613.2 (3)
C7—C8—C9—C100.3 (4)C15—C16—C23—O571.4 (2)
C8—C9—C10—N2−0.4 (4)C17—C16—C23—O5−161.24 (19)
C8—C7—C11—N2−2.3 (3)C16—C15—C24—O7−23.1 (3)
C6—C7—C11—N2178.8 (2)C14—C15—C24—O7−144.3 (2)
C8—C7—C11—C12176.3 (2)C16—C15—C24—O8160.03 (19)
C6—C7—C11—C12−2.6 (3)C14—C15—C24—O838.8 (2)
C3—C4—C12—N1−0.1 (3)C2—C1—N1—C12−0.8 (4)
C5—C4—C12—N1−179.1 (2)C2—C1—N1—Cu1−177.84 (18)
C3—C4—C12—C11−179.3 (2)C4—C12—N1—C10.6 (3)
C5—C4—C12—C111.6 (3)C11—C12—N1—C1179.9 (2)
N2—C11—C12—N10.2 (3)C4—C12—N1—Cu1178.13 (18)
C7—C11—C12—N1−178.5 (2)C11—C12—N1—Cu1−2.6 (2)
N2—C11—C12—C4179.5 (2)C9—C10—N2—C11−0.9 (4)
C7—C11—C12—C40.8 (3)C9—C10—N2—Cu1−179.39 (19)
C21—C13—C14—C20−88.1 (2)C7—C11—N2—C102.3 (3)
C18—C13—C14—C2043.2 (2)C12—C11—N2—C10−176.4 (2)
C21—C13—C14—C15157.29 (17)C7—C11—N2—Cu1−179.00 (18)
C18—C13—C14—C15−71.42 (19)C12—C11—N2—Cu12.3 (2)
C20—C14—C15—C2456.4 (2)O1—C21—O2—Cu1−23.2 (3)
C13—C14—C15—C24174.93 (17)C13—C21—O2—Cu1152.23 (14)
C20—C14—C15—C16−69.3 (2)O4—C22—O3—Cu1i9.8 (3)
C13—C14—C15—C1649.2 (2)C18—C22—O3—Cu1i−167.97 (14)
C24—C15—C16—C2326.6 (3)O8—C24—O7—Cu1ii−7.8 (4)
C14—C15—C16—C23149.70 (18)C15—C24—O7—Cu1ii175.59 (14)
C24—C15—C16—C17−103.3 (2)C21—O2—Cu1—O3iii−77.88 (17)
C14—C15—C16—C1719.8 (2)C21—O2—Cu1—N185.60 (17)
C23—C16—C17—C19−91.2 (2)C21—O2—Cu1—O7iv−170.81 (17)
C15—C16—C17—C1939.8 (2)C1—N1—Cu1—O3iii94.5 (3)
C23—C16—C17—C18153.60 (18)C12—N1—Cu1—O3iii−82.7 (3)
C15—C16—C17—C18−75.3 (2)C1—N1—Cu1—O2−9.3 (2)
C21—C13—C18—C2226.2 (3)C12—N1—Cu1—O2173.52 (15)
C14—C13—C18—C22−104.5 (2)C1—N1—Cu1—N2−179.9 (2)
C21—C13—C18—C17146.43 (17)C12—N1—Cu1—N22.94 (15)
C14—C13—C18—C1715.8 (2)C1—N1—Cu1—O7iv−95.1 (2)
C19—C17—C18—C2259.7 (2)C12—N1—Cu1—O7iv87.74 (15)
C16—C17—C18—C22178.16 (17)C10—N2—Cu1—O3iii−21.4 (2)
C19—C17—C18—C13−65.7 (2)C11—N2—Cu1—O3iii160.06 (15)
C16—C17—C18—C1352.9 (2)C10—N2—Cu1—N1175.7 (2)
C16—C17—C19—C20−57.8 (2)C11—N2—Cu1—N1−2.86 (15)
C18—C17—C19—C2056.8 (2)C10—N2—Cu1—O7iv71.1 (2)
C17—C19—C20—C145.7 (3)C11—N2—Cu1—O7iv−107.43 (15)
C13—C14—C20—C19−58.6 (2)

Symmetry codes: (i) x+1, y, z; (ii) −x+2, y+1/2, −z+2; (iii) x−1, y, z; (iv) −x+2, y−1/2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5···O1W0.821.842.567 (2)148
O8—H8···O2ii0.821.792.594 (2)166
O1W—HW11···O4v0.82 (3)1.97 (3)2.777 (3)167 (3)
O1W—HW12···O1vi0.82 (2)2.05 (3)2.763 (3)145 (4)

Symmetry codes: (ii) −x+2, y+1/2, −z+2; (v) x, y, z+1; (vi) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2718).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography