PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1490–m1491.
Published online 2008 November 8. doi:  10.1107/S1600536808035101
PMCID: PMC2960066

Aqua­[2,6-bis­(2-pyridylamino)pyridine]sulfatonickel(II) monohydrate

Abstract

The Ni atom in the title complex, [Ni(SO4)(C15H13N5)(H2O)]·H2O, has a distorted trigonal-bipyramidal coordination formed by the tridentate 2,6-bis­(2-pyridylamino)pyridine (tpdaH2) ligand, one sulfate and one coordinated water mol­ecule. The tpdaH2 ligand is three-coordinated, with the N atom of the central pyridine ring in the equatorial position [Ni—N = 1.9961 (14) Å] and the N atoms of the peripheral pyridine rings in the axial positions [Ni—N = 1.9668 (15) and 1.9895 (15) Å]. The remaining equatorial positions are occupied by the O atoms of the sulfate ligand and the water molecule. The H atoms of both NH groups of the tpdaH2 ligand are involved in hydrogen bonds with the O atoms of the uncoordinated water mol­ecule and the sulfate group which link the complex mol­ecules, forming an infinite three-dimensional network.

Related literature

For the properties of transition metal complexes with polypyridylamine ligands, see: Wang et al. (1999 [triangle]). For the tri-pyridyldiamine ligand, see: Jing et al. (2000 [triangle]). For metal–metal inter­actions, see: Cotton et al. (1998 [triangle]); Yang et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1490-scheme1.jpg

Experimental

Crystal data

  • [Ni(SO4)(C15H13N5)(H2O)]·H2O
  • M r = 454.11
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1490-efi1.jpg
  • a = 7.3536 (8) Å
  • b = 18.026 (2) Å
  • c = 12.9125 (14) Å
  • β = 95.634 (2)°
  • V = 1703.3 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.31 mm−1
  • T = 298 (2) K
  • 0.22 × 0.16 × 0.12 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.761, T max = 0.859
  • 8650 measured reflections
  • 3068 independent reflections
  • 2821 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.056
  • S = 1.06
  • 3068 reflections
  • 259 parameters
  • 8 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035101/dn2397sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035101/dn2397Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Sichuan University of Science and Engineering for financial support.

supplementary crystallographic information

Comment

Transition metal complexes with polypyridylamine ligands, possessing diverse structures and special optical and electromagnetic properties (Wang et al.,1999), have aroused great interest among researchers, Tri-pyridyldiamine ligand usually exhibits donor as well as acceptor properties and can be used as a popular chelating ligand (Jing et al., 2000). In recent years great efforts have been taken to synthesize and characterize metal chain complexes which can be used to study the metal-metal interactions (Yang et al., 1997; Cotton et al., 1998). Herein we report the synthesis and crystal structure of the title complex with tri-pyridyldiamine ligand.

The Ni1 atom in the title complex has a distorted trigonal-bipyramidal coordination formed by the tridentate tpdaH2 ligand, one sulfate and one coordinated water molecule. (Fig. 1). The tpdaH2 ligand is tri-coordinated, with the peripheral N1 and N5 atoms in the axial positions [Ni1—N1 = 1.9895 (15) Å, Ni1—N5 = 1.9668 (15) Å and N1—Ni1—N5 = 169.26 (6)°] and the central N3 atom in the equatorial plane of the bipyramid [Ni1—N3 = 1.9961 (14) Å]. The remaining equatorial positions are occupied by one sulfate and one coordinated water molecule. Selected geometric parameters have been listed in tabel 1.

The three pyridine rings of the tpdaH2 ligand are not coplanar. The dihedral angles between the planes of the central pyridine ring and two peripheral rings are 15.0 (7) and 22.7 (3)° respectively. In the title complex the two H atoms of both NH groups of tpdaH2 act as active H atoms in forming inter-molecular classical hydrogen bonds (Table 2). The inter-molecular hydrogen bonds function greatly in linking the complex to be a infinite three-dimensional network.

Experimental

Tripyridyldiamine (0.031 g, 0.12 mmol), NiSO4 (0.26 g, 0.13 mmol), were added in a solvent of acetonitrile, the mixture was heated for six hours under reflux. during the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel, three weeks later some single crystals of the size suitable for X-Ray diffraction analysis.

Refinement

Carbon H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances of 0.93Å (pyridine ring) with UisoH) 1.2Ueq(C). The amine H atoms were located in difference maps and freely refined with Uiso(H) 1.2Ueq(N). The water H atoms were located in different map and, in the first stage of refinement, refined with the O-H and H—H distances restraints to 0.85Å and 1.39Å respectively and with Uiso(H) 1.5Ueq(O). In the last cycle, they were treated as riding on their parent O atoms.

Figures

Fig. 1.
View of compound (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Only H atoms attached to water have been represented as small spheres of arbitrary radii. H bond is shown as dashed line.

Crystal data

[Ni(SO4)(C15H13N5)(H2O)]·H2OF000 = 936
Mr = 454.11Dx = 1.771 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3068 reflections
a = 7.3536 (8) Åθ = 2.0–25.2º
b = 18.026 (2) ŵ = 1.31 mm1
c = 12.9125 (14) ÅT = 298 (2) K
β = 95.634 (2)ºBlock, green
V = 1703.3 (3) Å30.22 × 0.16 × 0.12 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer3068 independent reflections
Radiation source: fine-focus sealed tube2821 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.014
T = 298(2) Kθmax = 25.2º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Bruker, 2004)h = −8→8
Tmin = 0.762, Tmax = 0.859k = −20→21
8650 measured reflectionsl = −15→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056  w = 1/[s2(Fo2) + (0.0291P)2 + 0.6456P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3068 reflectionsΔρmax = 0.24 e Å3
259 parametersΔρmin = −0.32 e Å3
8 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.26748 (3)0.067232 (10)0.233759 (14)0.02550 (8)
N10.3089 (2)0.06540 (7)0.38831 (11)0.0315 (3)
N20.2360 (2)−0.06140 (8)0.39796 (11)0.0372 (4)
H2B0.215 (3)−0.0957 (9)0.4422 (13)0.045*
N30.28575 (18)−0.04276 (7)0.22027 (10)0.0263 (3)
N40.3172 (2)−0.03370 (8)0.03833 (10)0.0308 (3)
H4B0.348 (3)−0.0593 (9)−0.0137 (11)0.037*
N50.1828 (2)0.07800 (7)0.08526 (11)0.0302 (3)
C10.3337 (3)0.13148 (10)0.43903 (14)0.0397 (4)
H10.36800.17240.40150.048*
C20.3110 (3)0.14091 (11)0.54147 (15)0.0464 (5)
H20.32470.18740.57250.056*
C30.2670 (3)0.07959 (13)0.59813 (15)0.0525 (5)
H30.25300.08420.66870.063*
C40.2442 (3)0.01220 (12)0.55020 (14)0.0468 (5)
H40.2156−0.02950.58780.056*
C50.2643 (2)0.00678 (9)0.44353 (13)0.0314 (4)
C60.2794 (2)−0.08911 (9)0.30303 (12)0.0288 (3)
C70.3110 (3)−0.16439 (9)0.29762 (13)0.0355 (4)
H70.2963−0.19490.35430.043*
C80.3645 (3)−0.19360 (9)0.20725 (14)0.0362 (4)
H80.3949−0.24360.20370.043*
C90.3728 (2)−0.14842 (9)0.12190 (13)0.0327 (4)
H90.4099−0.16720.06030.039*
C100.3249 (2)−0.07446 (8)0.12950 (12)0.0268 (3)
C110.2342 (2)0.03302 (9)0.01132 (12)0.0274 (3)
C120.2087 (3)0.05246 (10)−0.09421 (13)0.0353 (4)
H120.24580.0206−0.14480.042*
C130.1283 (3)0.11901 (10)−0.12178 (14)0.0389 (4)
H130.11290.1334−0.19130.047*
C140.0701 (2)0.16493 (10)−0.04534 (14)0.0370 (4)
H140.01260.2098−0.06280.044*
C150.0987 (2)0.14286 (9)0.05574 (14)0.0351 (4)
H150.05900.17350.10690.042*
S10.55296 (6)0.18214 (2)0.18169 (3)0.02779 (10)
O10.37943 (18)0.16682 (6)0.22894 (10)0.0409 (3)
O20.5111 (2)0.22657 (8)0.08910 (10)0.0496 (4)
O30.6762 (2)0.22117 (8)0.25801 (11)0.0553 (4)
O40.63271 (18)0.11012 (7)0.15417 (10)0.0417 (3)
O5−0.02550 (18)0.09435 (8)0.27157 (10)0.0466 (3)
H5A−0.03940.12130.32520.070*
H5B−0.12080.10080.22920.070*
O6−0.1511 (2)0.17329 (7)0.44790 (10)0.0473 (3)
H6A−0.09760.20590.48720.071*
H6B−0.21510.19470.39830.071*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.03692 (13)0.01854 (12)0.02107 (12)0.00086 (8)0.00302 (8)−0.00001 (7)
N10.0354 (8)0.0303 (8)0.0283 (7)0.0020 (6)−0.0002 (6)−0.0009 (6)
N20.0549 (10)0.0298 (8)0.0288 (8)−0.0026 (7)0.0136 (7)0.0031 (6)
N30.0305 (7)0.0233 (7)0.0256 (7)−0.0004 (5)0.0051 (5)0.0005 (5)
N40.0429 (9)0.0260 (7)0.0247 (7)0.0043 (6)0.0097 (6)0.0005 (6)
N50.0371 (8)0.0250 (7)0.0289 (7)0.0033 (6)0.0048 (6)0.0019 (6)
C10.0503 (11)0.0323 (9)0.0346 (9)0.0003 (8)−0.0053 (8)−0.0044 (7)
C20.0556 (13)0.0447 (11)0.0373 (10)0.0055 (9)−0.0041 (9)−0.0141 (9)
C30.0634 (14)0.0641 (14)0.0313 (10)0.0005 (11)0.0108 (9)−0.0123 (10)
C40.0602 (13)0.0507 (12)0.0314 (10)−0.0041 (10)0.0140 (9)0.0006 (8)
C50.0315 (9)0.0335 (9)0.0294 (8)0.0029 (7)0.0039 (7)0.0002 (7)
C60.0316 (9)0.0278 (8)0.0275 (8)−0.0018 (7)0.0054 (6)0.0018 (7)
C70.0469 (11)0.0272 (9)0.0327 (9)−0.0019 (7)0.0051 (8)0.0063 (7)
C80.0451 (11)0.0221 (8)0.0413 (10)0.0027 (7)0.0032 (8)0.0010 (7)
C90.0392 (10)0.0270 (8)0.0327 (9)0.0022 (7)0.0071 (7)−0.0024 (7)
C100.0266 (8)0.0259 (8)0.0280 (8)−0.0010 (6)0.0039 (6)0.0002 (6)
C110.0285 (8)0.0256 (8)0.0283 (8)−0.0029 (6)0.0041 (6)0.0014 (6)
C120.0443 (11)0.0342 (9)0.0278 (8)0.0003 (8)0.0057 (7)0.0002 (7)
C130.0459 (11)0.0401 (10)0.0299 (9)0.0004 (8)−0.0001 (8)0.0079 (8)
C140.0385 (10)0.0299 (9)0.0414 (10)0.0032 (7)−0.0016 (8)0.0071 (8)
C150.0401 (10)0.0286 (9)0.0366 (9)0.0049 (7)0.0037 (7)0.0005 (7)
S10.0340 (2)0.0242 (2)0.02483 (19)0.00013 (16)0.00140 (16)−0.00106 (15)
O10.0525 (8)0.0268 (6)0.0467 (7)−0.0059 (5)0.0217 (6)−0.0056 (5)
O20.0642 (9)0.0480 (8)0.0378 (7)0.0110 (7)0.0114 (6)0.0162 (6)
O30.0541 (9)0.0483 (9)0.0593 (9)−0.0030 (7)−0.0153 (7)−0.0187 (7)
O40.0489 (8)0.0356 (7)0.0401 (7)0.0116 (6)0.0020 (6)−0.0076 (5)
O50.0364 (7)0.0672 (9)0.0361 (7)0.0131 (7)0.0035 (5)−0.0052 (6)
O60.0628 (9)0.0392 (7)0.0391 (7)−0.0064 (6)0.0004 (6)−0.0034 (6)

Geometric parameters (Å, °)

Ni1—N51.9665 (14)C4—H40.9300
Ni1—O11.9784 (12)C6—C71.380 (2)
Ni1—N11.9892 (14)C7—C81.373 (3)
Ni1—N31.9961 (14)C7—H70.9300
Ni1—O52.3077 (13)C8—C91.377 (2)
N1—C51.334 (2)C8—H80.9300
N1—C11.363 (2)C9—C101.385 (2)
N2—C51.370 (2)C9—H90.9300
N2—C61.389 (2)C11—C121.402 (2)
N2—H2B0.866 (9)C12—C131.369 (2)
N3—C101.360 (2)C12—H120.9300
N3—C61.361 (2)C13—C141.388 (3)
N4—C111.378 (2)C13—H130.9300
N4—C101.384 (2)C14—C151.361 (2)
N4—H4B0.862 (9)C14—H140.9300
N5—C111.335 (2)C15—H150.9300
N5—C151.360 (2)S1—O21.4467 (13)
C1—C21.360 (3)S1—O31.4531 (14)
C1—H10.9300S1—O41.4821 (12)
C2—C31.381 (3)S1—O11.4932 (13)
C2—H20.9300O5—H5A0.8598
C3—C41.366 (3)O5—H5B0.8532
C3—H30.9300O6—H6A0.8477
C4—C51.403 (2)O6—H6B0.8488
N5—Ni1—O188.43 (6)N3—C6—N2120.04 (15)
N5—Ni1—N1169.25 (6)C7—C6—N2116.92 (15)
O1—Ni1—N191.34 (6)C8—C7—C6118.96 (16)
N5—Ni1—N391.75 (5)C8—C7—H7120.5
O1—Ni1—N3150.08 (5)C6—C7—H7120.5
N1—Ni1—N393.79 (5)C7—C8—C9119.51 (16)
N5—Ni1—O588.44 (5)C7—C8—H8120.2
O1—Ni1—O5102.39 (5)C9—C8—H8120.2
N1—Ni1—O581.11 (5)C8—C9—C10118.76 (16)
N3—Ni1—O5107.52 (5)C8—C9—H9120.6
C5—N1—C1117.63 (15)C10—C9—H9120.6
C5—N1—Ni1121.88 (11)N3—C10—N4121.05 (14)
C1—N1—Ni1117.88 (11)N3—C10—C9122.84 (15)
C5—N2—C6131.54 (15)N4—C10—C9116.11 (14)
C5—N2—H2B112.7 (14)N5—C11—N4119.90 (14)
C6—N2—H2B113.3 (14)N5—C11—C12121.54 (15)
C10—N3—C6116.45 (14)N4—C11—C12118.55 (15)
C10—N3—Ni1120.95 (10)C13—C12—C11119.02 (16)
C6—N3—Ni1122.24 (11)C13—C12—H12120.5
C11—N4—C10131.19 (14)C11—C12—H12120.5
C11—N4—H4B114.3 (13)C12—C13—C14119.56 (16)
C10—N4—H4B112.8 (12)C12—C13—H13120.2
C11—N5—C15118.33 (14)C14—C13—H13120.2
C11—N5—Ni1123.55 (11)C15—C14—C13118.56 (16)
C15—N5—Ni1116.74 (11)C15—C14—H14120.7
C2—C1—N1123.59 (18)C13—C14—H14120.7
C2—C1—H1118.2N5—C15—C14122.94 (16)
N1—C1—H1118.2N5—C15—H15118.5
C1—C2—C3118.20 (18)C14—C15—H15118.5
C1—C2—H2120.9O2—S1—O3111.12 (9)
C3—C2—H2120.9O2—S1—O4110.11 (8)
C4—C3—C2119.76 (18)O3—S1—O4110.59 (8)
C4—C3—H3120.1O2—S1—O1108.60 (8)
C2—C3—H3120.1O3—S1—O1108.26 (9)
C3—C4—C5119.10 (19)O4—S1—O1108.06 (7)
C3—C4—H4120.4S1—O1—Ni1123.76 (7)
C5—C4—H4120.4Ni1—O5—H5A118.5
N1—C5—N2121.08 (15)Ni1—O5—H5B128.2
N1—C5—C4121.67 (16)H5A—O5—H5B106.5
N2—C5—C4117.25 (16)H6A—O6—H6B109.1
N3—C6—C7123.03 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2B···O6i0.866 (9)2.079 (10)2.9433 (19)176 (2)
N4—H4B···O4ii0.862 (9)2.050 (10)2.8967 (18)167.1 (18)
O5—H5A···O60.862.082.9112 (18)163
O5—H5B···O4iii0.851.982.8192 (19)169
O6—H6A···O2iv0.851.912.7531 (18)173
O6—H6B···O3iii0.851.972.785 (2)162

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z; (iii) x−1, y, z; (iv) x−1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2397).

References

  • Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Cotton, F. A., Daniels, L. M., Murillo, C. A. & Wang, X. (1998). Chem. Commun. pp. 39–40.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jing, B.-W., Wu, T., Zhang, M.-W. & Shen, T. (2000). Chem. J. Chin Univ 21, 395–400.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Z., Xiong, R.-G., Naggar, E., Foxman, B. M. & Lin, W.-B. (1999). Inorg. Chim. Acta, 288, 215–219.
  • Yang, M. H., Lin, T. W., Chou, C. C., Lee, H. C., Chang, H. C., Lee, G. H., Leung, M. K. & Peng, S. M. (1997). Chem. Commun. pp. 39–40.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography