PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2376.
Published online 2008 November 20. doi:  10.1107/S160053680803701X
PMCID: PMC2960060

N,N-Dimethyl­acetamide–4-iodo­benzene­sulfonic acid–water (1/1/1)

Abstract

In the title compound, C6H5IO3S·C4H9NO·H2O, N,N-dimethylacetamide and 4-iodobenzenesulfonic acidmolecules are linked by an intramolecular C—H(...)O hydrogen bond. In the crystal structure, inter­molecular O—H(...)O, O—H(...)I and C—H(...)O hydrogen bonds link the mol­ecules.

Related literature

For a related structure, see: Wu et al. (2000 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2376-scheme1.jpg

Experimental

Crystal data

  • C6H5IO3S·C4H9NO·H2O
  • M r = 389.21
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2376-efi1.jpg
  • a = 14.173 (3) Å
  • b = 7.7480 (15) Å
  • c = 13.272 (3) Å
  • V = 1457.4 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.35 mm−1
  • T = 294 (2) K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.539, T max = 0.799
  • 1490 measured reflections
  • 1490 independent reflections
  • 1096 reflections with I > 2σ(I)
  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063
  • wR(F 2) = 0.162
  • S = 1.07
  • 1490 reflections
  • 172 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.53 e Å−3
  • Δρmin = −2.42 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 7 Friedel pairs
  • Flack parameter: 0.13 (10)

Data collection: CAD-4 Software (Enraf–Nonius, 1985 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803701X/hk2535sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803701X/hk2535Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The crystal structure of the title compound with a comb-like structure illustrate the three different components linked by weak interactions based on hydrogen bonds. Furthermore, the hydrolysis mechanism of the innersalt, which was formed from 4-iodobenzenesulfonyl chloride and N,N-dimethylacetamide, was understood (Wu et al., 2000). Meanwhile, the complicated hydrolysate was finally confirmed. We report herein its crystal structure.

The asymmetric unit of the title compound contains N,N-dimethylacetamide, 4-iodobenzenesulfonic acid and water molecules (Fig. 1), in which the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar. The intramolecular C-H···O hydrogen bonds (Table 1) result in the formation of two nonplanar five-membered rings B (S/O1/C2/C3/H2B) and C (O4/N1/C8/C10/H8A), having envelope conformations with O1 and H8A atoms displaced by 0.193 (3) and 0.194 (3) Å, respectively, from the planes of the other ring atoms.

In the crystal structure, intermolecular O-H···O, O-H···I and C-H···O hydrogen bonds link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. As can be seen from the packing diagram (Fig. 3), the molecules are stacked along the b axis. The comb-like structure depends on C-H···O hydrogen bonds. The 4-iodobenzenesulfonic acid molecules constitute the main chain and the N,N-dimethylacetamide molecules intermesh to each other as the branches.

Experimental

Addition of N,N-dimethylacetamide (1.8 ml, 0.02 mol) into 4-iodobenzenesulfonyl chloride (6.1 g, 0.02 mol) gave milk-white solution of innersalt (Wu et al., 2000). The innersalt was dissolved in acetone (20 ml) and placed in moist chamber to crystallize. The crystals were obtained by evaporating solvent slowly at room temperature for about 40 d.

Refinement

Water H atoms were located in difference syntheses and refined as [O-H = 0.88 (9) Å and 0.94 (9) Å; Uiso(H) = 0.093 Å2]. The remaining H atoms were positioned geometrically, with O-H = 0.85 Å (for OH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
Fig. 2.
A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Fig. 3.
A packing diagram of the title compound, showing the formation of the supramolecular comb-like structure. For the sake of clarity, water molecules have been omitted.

Crystal data

C6H5IO3S·C4H9NO·H2ODx = 1.774 Mg m3
Mr = 389.21Melting point: 363 K
Orthorhombic, Pca21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 25 reflections
a = 14.173 (3) Åθ = 10–13º
b = 7.7480 (15) ŵ = 2.35 mm1
c = 13.272 (3) ÅT = 294 (2) K
V = 1457.4 (5) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
F000 = 768

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.0000
Radiation source: fine-focus sealed tubeθmax = 25.9º
Monochromator: graphiteθmin = 2.6º
T = 294(2) Kh = 0→17
ω/2θ scansk = 0→9
Absorption correction: ψ scan(North et al., 1968)l = 0→16
Tmin = 0.539, Tmax = 0.7993 standard reflections
1490 measured reflections every 120 min
1490 independent reflections intensity decay: none
1096 reflections with I > 2σ(I)

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.063  w = 1/[σ2(Fo2) + (0.1045P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.162(Δ/σ)max < 0.001
S = 1.07Δρmax = 1.53 e Å3
1490 reflectionsΔρmin = −2.42 e Å3
172 parametersExtinction correction: none
4 restraintsAbsolute structure: Flack (1983), 7 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.13 (10)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I10.20688 (5)0.25040 (11)0.7328 (2)0.0505 (3)
S0.1876 (2)0.9056 (4)1.0531 (3)0.0438 (8)
O1W0.9586 (8)0.1582 (19)0.0789 (10)0.077 (4)
H1WA0.914 (10)0.084 (19)0.065 (17)0.093*
H1WB1.023 (7)0.13 (2)0.082 (15)0.093*
O10.1588 (10)0.8396 (14)1.1505 (8)0.076 (4)
O20.2802 (7)0.9782 (15)1.0512 (14)0.094 (5)
H2A0.27681.08481.06590.113*
O30.1189 (8)1.0230 (11)1.0115 (8)0.053 (2)
O4−0.0108 (7)0.6431 (14)0.7131 (8)0.060 (3)
N1−0.0502 (9)0.597 (2)0.8736 (12)0.070 (4)
C10.1840 (9)0.4229 (16)0.9376 (10)0.041 (3)
H1B0.17560.31100.96130.050*
C20.1806 (9)0.5632 (16)1.0022 (10)0.043 (3)
H2B0.17090.54501.07060.051*
C30.1912 (8)0.7263 (14)0.9674 (11)0.034 (3)
C40.2059 (8)0.7609 (14)0.8682 (12)0.038 (3)
H4A0.21320.87410.84610.046*
C50.2100 (8)0.6222 (17)0.7992 (10)0.044 (3)
H5A0.21880.64120.73060.053*
C60.2002 (8)0.4547 (15)0.8381 (10)0.038 (3)
C7−0.0714 (13)0.648 (3)0.9756 (12)0.078 (5)
H7A−0.11760.73860.97480.117*
H7B−0.01490.68901.00760.117*
H7C−0.09560.55091.01210.117*
C8−0.0515 (12)0.407 (2)0.8500 (15)0.073 (5)
H8A−0.04900.39030.77840.110*
H8B−0.10840.35620.87600.110*
H8C0.00200.35190.88080.110*
C9−0.0327 (13)0.897 (2)0.8184 (15)0.072 (5)
H9A0.02030.93000.85900.107*
H9B−0.09010.92760.85220.107*
H9C−0.02960.95480.75460.107*
C10−0.0305 (12)0.705 (2)0.8017 (15)0.062 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.0651 (5)0.0364 (4)0.0499 (5)0.0024 (4)−0.0001 (8)−0.0136 (4)
S0.0544 (17)0.0296 (14)0.0473 (17)0.0041 (14)−0.0096 (18)−0.0142 (15)
O1W0.054 (6)0.103 (10)0.075 (9)0.002 (7)0.005 (6)−0.025 (8)
O10.141 (11)0.047 (6)0.039 (6)0.028 (7)0.002 (6)−0.003 (5)
O20.076 (8)0.059 (7)0.147 (13)0.004 (6)−0.020 (9)−0.062 (9)
O30.062 (6)0.035 (5)0.060 (6)0.008 (4)−0.006 (5)−0.011 (4)
O40.065 (6)0.060 (6)0.055 (7)0.006 (5)0.000 (5)0.001 (6)
N10.052 (8)0.083 (10)0.074 (10)−0.008 (8)−0.016 (7)0.003 (9)
C10.057 (7)0.024 (6)0.043 (7)−0.009 (6)0.001 (6)0.000 (5)
C20.064 (8)0.034 (7)0.030 (6)0.003 (6)−0.006 (6)0.003 (6)
C30.031 (6)0.025 (6)0.045 (7)0.004 (5)−0.002 (5)−0.006 (5)
C40.049 (7)0.017 (5)0.048 (8)−0.001 (5)0.000 (6)−0.003 (5)
C50.051 (8)0.042 (7)0.039 (7)0.006 (6)−0.004 (6)−0.003 (6)
C60.049 (7)0.024 (6)0.041 (7)−0.002 (5)−0.002 (6)−0.006 (6)
C70.082 (12)0.101 (15)0.051 (10)−0.005 (11)0.018 (9)−0.004 (10)
C80.061 (10)0.070 (11)0.089 (13)−0.011 (9)0.000 (9)0.008 (11)
C90.078 (12)0.079 (13)0.059 (10)0.013 (9)−0.012 (9)−0.017 (10)
C100.060 (10)0.060 (10)0.066 (11)−0.002 (8)−0.018 (9)0.009 (9)

Geometric parameters (Å, °)

I1—C62.113 (12)C2—H2B0.9300
S—O21.429 (11)C3—C41.36 (2)
S—O31.441 (10)C4—C51.413 (18)
S—O11.449 (12)C4—H4A0.9300
S—C31.796 (12)C5—C61.404 (18)
O1W—H1WA0.88 (9)C5—H5A0.9300
O1W—H1WB0.94 (9)C7—H7A0.9600
O2—H2A0.8500C7—H7B0.9600
O4—C101.30 (2)C7—H7C0.9600
N1—C101.30 (2)C8—H8A0.9600
N1—C71.44 (2)C8—H8B0.9600
N1—C81.51 (2)C8—H8C0.9600
C1—C61.363 (19)C9—C101.50 (2)
C1—C21.386 (17)C9—H9A0.9600
C1—H1B0.9300C9—H9B0.9600
C2—C31.354 (17)C9—H9C0.9600
O2—S—O3111.4 (8)C4—C5—H5A121.3
O2—S—O1114.4 (9)C1—C6—C5122.7 (12)
O3—S—O1112.0 (7)C1—C6—I1120.8 (9)
O2—S—C3105.5 (6)C5—C6—I1116.4 (9)
O3—S—C3105.3 (6)N1—C7—H7A109.5
O1—S—C3107.5 (7)N1—C7—H7B109.5
H1WA—O1W—H1WB125 (10)H7A—C7—H7B109.5
S—O2—H2A109.0N1—C7—H7C109.5
C10—N1—C7123.8 (18)H7A—C7—H7C109.5
C10—N1—C8118.8 (16)H7B—C7—H7C109.5
C7—N1—C8117.5 (17)N1—C8—H8A109.5
C6—C1—C2117.6 (12)N1—C8—H8B109.5
C6—C1—H1B121.2H8A—C8—H8B109.5
C2—C1—H1B121.2N1—C8—H8C109.5
C3—C2—C1121.2 (13)H8A—C8—H8C109.5
C3—C2—H2B119.4H8B—C8—H8C109.5
C1—C2—H2B119.4C10—C9—H9A109.5
C2—C3—C4122.1 (12)C10—C9—H9B109.5
C2—C3—S120.2 (11)H9A—C9—H9B109.5
C4—C3—S117.7 (9)C10—C9—H9C109.5
C3—C4—C5118.9 (11)H9A—C9—H9C109.5
C3—C4—H4A120.5H9B—C9—H9C109.5
C5—C4—H4A120.5O4—C10—N1118.1 (16)
C6—C5—C4117.5 (13)O4—C10—C9120.3 (16)
C6—C5—H5A121.3N1—C10—C9121.7 (19)
C6—C1—C2—C31(2)S—C3—C4—C5179.4 (8)
C1—C2—C3—C40(2)C3—C4—C5—C6−1.2 (17)
C1—C2—C3—S−179.4 (10)C2—C1—C6—C5−2(2)
O2—S—C3—C2114.1 (12)C2—C1—C6—I1180.0 (9)
O3—S—C3—C2−127.9 (11)C4—C5—C6—C12.3 (18)
O1—S—C3—C2−8.3 (13)C4—C5—C6—I1−179.9 (8)
O2—S—C3—C4−65.0 (13)C7—N1—C10—O4178.7 (14)
O3—S—C3—C452.9 (11)C8—N1—C10—O4−1(2)
O1—S—C3—C4172.5 (10)C7—N1—C10—C9−3(3)
C2—C3—C4—C50.3 (19)C8—N1—C10—C9176.9 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2i0.87 (13)1.97 (15)2.765 (16)151 (14)
O1W—H1WB···O3ii0.94 (10)1.85 (15)2.657 (16)143 (17)
O2—H2A···I1iii0.852.573.208 (16)133
C1—H1B···O3iv0.932.463.378 (15)168
C2—H2B···O10.932.522.925 (17)106
C5—H5A···O1v0.932.553.192 (17)126
C8—H8A···O40.962.212.64 (2)106
C9—H9A···O30.962.563.48 (2)161

Symmetry codes: (i) x+1/2, −y+1, z−1; (ii) x+1, y−1, z−1; (iii) −x+1/2, y+1, z+1/2; (iv) x, y−1, z; (v) −x+1/2, y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2535).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wu, J. S., Chi, C. Y., Wang, X. H., Li, J., Zhao, X. J. & Wang, F. S. (2000). Synth. Commun 30, 4293–4298.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography