PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1629.
Published online 2008 November 29. doi:  10.1107/S1600536808039275
PMCID: PMC2960059

Poly[μ-azido-(μ3-nicotinato N-oxide)zinc(II)]

Abstract

The title compound, [Zn(C6H4NO3)(N3)], has been prepared by the reaction of nicotinate N-oxide acid, zinc(II) nitrate and sodium azide. The Zn atom is five coordinated by two azide anions and three nicotinate N-oxide ligands. Each nicotinate N-oxide bridges three Zn atoms, whereas the azide bridges two Zn atoms, resulting in the formation of a two-dimensional metal–organic polymer developing parallel to (100).

Related literature

For background to metal–azide complexes, see: Escuer et al. (1997 [triangle]); Liu et al. (2005 [triangle]); Monfort et al. (2000 [triangle]); Shen et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1629-scheme1.jpg

Experimental

Crystal data

  • [Zn(C6H4NO3)(N3)]
  • M r = 245.50
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1629-efi7.jpg
  • a = 8.1132 (16) Å
  • b = 6.1342 (12) Å
  • c = 15.786 (3) Å
  • β = 101.19 (3)°
  • V = 770.7 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.17 mm−1
  • T = 293 (2) K
  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.786, T max = 1.000 (expected range = 0.489–0.622)
  • 7629 measured reflections
  • 1761 independent reflections
  • 1293 reflections with I > 2σ(I)
  • R int = 0.091

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.122
  • S = 1.12
  • 1761 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: CrystalClear (Rigaku, 2007 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039275/dn2407sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039275/dn2407Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from Tianjin Municipal Education Commission (No. 20060503)

supplementary crystallographic information

Comment

Metal azide complexes have attracted great attention in recent years. The azide anion have rich coordinated mode. (Shen,et al., 2000). In this sense, several 1-D,2-D, and 3-D metal-azide complexes have been reported.(Monfort,et al., 2000). In most of the compounds reported to date, the coligands are neutral organic ligands, while charged ligands are very scarce (Escuer et al., 1997). Synthesizing high-dimensional compounds with azide and negatively charged ligands represents then a challenge for researchers working in this field.(Liu,et al., 2005)

In the title compound, the zinc atom is five coordinated by two azide anions and three nicotinate N-oxide ligands (Fig. 1). Each nicotinate N-oxide bridges three zinc atoms whereas the azide is bridging two zinc atoms resulting in the formation of a two dimensional metal organic polymer developping parallel to the (1 0 0) plane.

Experimental

A mixture of zinc(II)nitrate and sodium azide (1 mmol), nicotinate N-oxide acid(0.5 mmol), in 10 ml of water was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 363 K for 48 h. Pink crystals of the title complex were collected after the bomb was allowed to cool to room temperature.Yield 30% based on zinc(II). Caution:Metal azides may be explosive. Although we have met no problems in this work, only a small amount of them should be prepared and handled with great caution.

Refinement

Hydrogen atoms were included in calculated positions and treated as riding on their parent C atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A partial view of the title compound showing the coordination of Zn atom with the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atom have been omitted for clarity. [ Symmetry codes: (i) -x+2, y+1/2, -z+3/2; (ii) -x+2, -y+2, ...

Crystal data

[Zn(C6H4NO3)(N3)]F000 = 488
Mr = 245.50Dx = 2.116 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6677 reflections
a = 8.1132 (16) Åθ = 3.1–27.6º
b = 6.1342 (12) ŵ = 3.17 mm1
c = 15.786 (3) ÅT = 293 (2) K
β = 101.19 (3)ºBlock, pink
V = 770.7 (3) Å30.20 × 0.18 × 0.15 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer1761 independent reflections
Radiation source: fine-focus sealed tube1293 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.091
T = 293(2) Kθmax = 27.5º
ω scansθmin = 3.3º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)h = −10→10
Tmin = 0.786, Tmax = 1.000k = −7→7
7629 measured reflectionsl = −20→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.122  w = 1/[σ2(Fo2) + (0.0419P)2 + 1.4372P] where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1761 reflectionsΔρmax = 0.50 e Å3
127 parametersΔρmin = −0.52 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.92049 (8)1.07685 (11)0.77114 (4)0.0250 (2)
N21.2498 (6)0.9185 (8)0.8332 (3)0.0259 (10)
O30.9850 (5)0.8093 (6)1.1049 (2)0.0246 (9)
O20.8412 (5)0.5276 (7)1.1413 (3)0.0396 (11)
O10.7173 (5)0.9338 (8)0.7978 (2)0.0395 (11)
N40.7150 (5)0.7746 (8)0.8558 (3)0.0261 (11)
C60.8023 (7)0.7911 (9)0.9367 (3)0.0229 (12)
H6A0.87160.91100.95260.028*
N11.1263 (6)0.8822 (7)0.7773 (3)0.0268 (11)
C50.6141 (6)0.6031 (10)0.8310 (3)0.0263 (13)
H5A0.55430.59530.77450.032*
C40.5987 (7)0.4421 (10)0.8872 (4)0.0308 (14)
H4A0.52760.32470.87000.037*
C20.7901 (7)0.6329 (9)0.9958 (3)0.0208 (12)
N31.3654 (6)0.9564 (8)0.8842 (3)0.0361 (13)
C30.6906 (7)0.4538 (10)0.9712 (4)0.0299 (14)
H3A0.68470.34181.01030.036*
C10.8807 (7)0.6564 (9)1.0894 (4)0.0232 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0290 (4)0.0231 (4)0.0213 (3)0.0007 (3)0.0006 (2)0.0007 (3)
N20.030 (3)0.019 (2)0.030 (3)−0.001 (2)0.008 (2)0.000 (2)
O30.028 (2)0.024 (2)0.021 (2)−0.0054 (17)0.0008 (16)−0.0007 (17)
O20.047 (3)0.046 (3)0.021 (2)−0.024 (2)−0.0064 (18)0.011 (2)
O10.032 (2)0.055 (3)0.027 (2)−0.014 (2)−0.0085 (17)0.025 (2)
N40.024 (3)0.033 (3)0.021 (2)−0.002 (2)0.002 (2)0.005 (2)
C60.026 (3)0.023 (3)0.019 (3)−0.006 (2)0.000 (2)−0.002 (2)
N10.025 (3)0.025 (3)0.026 (3)0.004 (2)−0.006 (2)−0.007 (2)
C50.022 (3)0.035 (4)0.020 (3)−0.007 (3)−0.002 (2)−0.004 (3)
C40.035 (3)0.027 (3)0.027 (3)−0.012 (3)−0.001 (2)−0.008 (3)
C20.023 (3)0.023 (3)0.018 (3)0.001 (2)0.004 (2)−0.002 (2)
N30.029 (3)0.036 (3)0.039 (3)−0.006 (2)−0.004 (2)−0.004 (3)
C30.039 (4)0.026 (3)0.024 (3)−0.010 (3)0.004 (3)0.002 (3)
C10.025 (3)0.024 (3)0.020 (3)0.002 (2)0.002 (2)−0.003 (2)

Geometric parameters (Å, °)

Zn1—O11.983 (4)N4—C51.344 (7)
Zn1—N1i2.031 (5)C6—C21.363 (7)
Zn1—N12.040 (4)C6—H6A0.9300
Zn1—O3ii2.079 (4)C5—C41.349 (8)
Zn1—O2iii2.125 (4)C5—H5A0.9300
N2—N31.134 (6)C4—C31.392 (7)
N2—N11.220 (6)C4—H4A0.9300
O3—C11.255 (6)C2—C31.374 (8)
O2—C11.225 (7)C2—C11.523 (7)
O1—N41.342 (6)C3—H3A0.9300
N4—C61.338 (6)
O1—Zn1—N1i112.69 (19)C2—C6—H6A119.9
O1—Zn1—N1115.93 (19)N2—N1—Zn1v120.5 (4)
N1i—Zn1—N1130.49 (12)N2—N1—Zn1118.5 (4)
O1—Zn1—O3ii96.82 (16)Zn1v—N1—Zn1115.5 (2)
N1i—Zn1—O3ii93.02 (17)N4—C5—C4120.7 (5)
N1—Zn1—O3ii90.14 (16)N4—C5—H5A119.7
O1—Zn1—O2iii87.86 (18)C4—C5—H5A119.7
N1i—Zn1—O2iii85.13 (18)C5—C4—C3119.2 (5)
N1—Zn1—O2iii87.80 (17)C5—C4—H4A120.4
O3ii—Zn1—O2iii175.31 (17)C3—C4—H4A120.4
N3—N2—N1178.4 (6)C6—C2—C3119.5 (5)
C1—O3—Zn1ii123.1 (4)C6—C2—C1120.7 (5)
C1—O2—Zn1iv140.4 (4)C3—C2—C1119.7 (5)
N4—O1—Zn1126.1 (3)C2—C3—C4119.1 (5)
C6—N4—O1121.4 (5)C2—C3—H3A120.4
C6—N4—C5121.1 (5)C4—C3—H3A120.4
O1—N4—C5117.3 (4)O2—C1—O3127.3 (5)
N4—C6—C2120.3 (5)O2—C1—C2116.6 (5)
N4—C6—H6A119.9O3—C1—C2116.1 (5)

Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) −x+2, −y+2, −z+2; (iii) x, −y+3/2, z−1/2; (iv) x, −y+3/2, z+1/2; (v) −x+2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2407).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Escuer, A., Vicente, R., Mautner, F. A. & Goher, M. A. S. (1997). Inorg. Chem.36, 1233–1236. [PubMed]
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Liu, F.-C., Zeng, Y.-F., Li, J.-R., Bu, X.-H., Zhang, H.-J. & Ribas, J. (2005). Inorg. Chem.44, 7298–7300. [PubMed]
  • Monfort, M., Resino, I., Ribas, J. & Stoeckli-Evans, H. (2000). Angew. Chem. Int. Ed.39, 191–193. [PubMed]
  • Rigaku (2007). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shen, Z., Zuo, J.-L., Gao, S., Song, Y., Che, C.-M., Fun, H.-K. & You, X.-Z. (2000). Angew. Chem. Int. Ed.39, 3633–3635. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography