PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2406.
Published online 2008 November 22. doi:  10.1107/S160053680803818X
PMCID: PMC2960053

2-[4-(4,5-Dihydro-1H-pyrrol-2-yl)phen­yl]-4,5-dihydro-1H-imidazole

Abstract

The mol­ecule of the title compound, C12H14N4, lies about a crystallographic inversion centre. The five- and six-membered rings are twisted from each other, forming a dihedral angle of 18.06 (7)°. In the crystal structure, neighbouring mol­ecules are linked by inter­molecular N—H(...)N hydrogen bonds into one-dimensional infinite chains forming 18-membered rings with R 2 2(18) motifs. The crystal structure is further stabilized by weak inter­molecular π–π stacking [centroid–centroid distance = 3.8254 (6) Å] and C—H(...)π inter­actions.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For a related structure and synthesis, see: Stibrany et al. (2004 [triangle]). For applications, see: Blancafort (1978 [triangle]); Chan (1993 [triangle]); Vizi (1986 [triangle]); Li et al. (1996 [triangle]); Ueno et al. (1995 [triangle]); Corey & Grogan (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2406-scheme1.jpg

Experimental

Crystal data

  • C12H14N4
  • M r = 214.27
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2406-efi1.jpg
  • a = 4.8863 (2) Å
  • b = 5.1472 (2) Å
  • c = 10.2295 (4) Å
  • α = 104.414 (2)°
  • β = 93.885 (2)°
  • γ = 94.207 (2)°
  • V = 247.52 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100.0 (1) K
  • 0.56 × 0.17 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.950, T max = 0.986
  • 4616 measured reflections
  • 1296 independent reflections
  • 1208 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.116
  • S = 1.07
  • 1296 reflections
  • 101 parameters
  • All H-atom parameters refined
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680803818X/tk2331sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803818X/tk2331Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for a Science Fund grant (No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for a Research University Golden Goose grant (No. 1001/PFIZIK/811012).

supplementary crystallographic information

Comment

Imidazoline derivatives are of great importance because they exhibit significant biological and pharmacological activities including anti-hypertensive (Blancafort 1978), anti-hyperglycemic (Chan 1993), anti-depressive (Vizi 1986), anti-hypercholesterolemic (Li et al., 1996) and anti-inflammatory (Ueno et al., 1995) activities. These compounds are also used as catalysts and synthetic intermediates in some organic reactions (Corey & Grogan 1999). In consideration of the important applications of imidazolines, herein the crystal structure of the title compound, (I), is reported.

In compound (I), Fig. 1, bond lengths and angles are within the normal ranges and are comparable with a related structure (Stibrany et al., 2004). The molecule lies about a crystallographic inversion centre. The five- and six-membered rings are twisted from each other, forming a dihedral angle of 18.06 (7)°. Intermolecular N—H···N hydrogen bonds form 18-membered rings producing R22(18) ring motifs to link molecules into one-dimensional infinite chains along the b-axis, Table 1 and Fig. 2. The crystal structure is further stabilized by weak intermolecular π–π stacking [Cg1···Cg2i = 3.8254 (6) Å; (i) 1 + x, y, z] and C—H···π (Cg1 and Cg2 are the centroids of the N1/C1/C2/N2/C3 imidazoline ring and the benzene ring, respectively) interactions, Table 1.

Experimental

The synthetic method used for the preparation of (I) was based on previous work (Stibrany et al. 2004), except that 1,4-dicyanobenzene (10 mmol) and ethylenediamine (40 mmol) were used. Single crystals suitable for X-ray diffraction were obtained by evaporation of a methanol solution of (I) held at room temperature.

Refinement

All hydrogen atoms were located from a difference Fourier map and refined freely: C—H ranged from 0.961 (16) to 1.015 (15) Å and N—H was 0.874 (18) Å.

Figures

Fig. 1.
The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms. Unlabelled atoms are related by -x + 1, -y, -z.
Fig. 2.
Partial crystal packing in (I), viewed down the a-axis showing one-dimensional infinite chains along the b-axis mediated by intermolecular N—H···N interactions (dashed lines).

Crystal data

C12H14N4Z = 1
Mr = 214.27F000 = 114
Triclinic, P1Dx = 1.437 Mg m3
Hall symbol: -P 1Melting point: 312 K
a = 4.8863 (2) ÅMo Kα radiation λ = 0.71073 Å
b = 5.1472 (2) ÅCell parameters from 3789 reflections
c = 10.2295 (4) Åθ = 2.5–30.3º
α = 104.414 (2)ºµ = 0.09 mm1
β = 93.885 (2)ºT = 100.0 (1) K
γ = 94.207 (2)ºBlock, colourless
V = 247.522 (17) Å30.56 × 0.17 × 0.15 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer1296 independent reflections
Radiation source: fine-focus sealed tube1208 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.026
T = 100.0(1) Kθmax = 29.0º
[var phi] and ω scansθmin = 4.1º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −6→6
Tmin = 0.950, Tmax = 0.986k = −6→6
4616 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.116  w = 1/[σ2(Fo2) + (0.0717P)2 + 0.0714P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1296 reflectionsΔρmax = 0.42 e Å3
101 parametersΔρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.99649 (17)0.02202 (18)0.30177 (9)0.0140 (2)
N21.05027 (18)0.42785 (18)0.25064 (9)0.0161 (2)
C11.2376 (2)0.1595 (2)0.39310 (10)0.0148 (2)
C21.2547 (2)0.4433 (2)0.36664 (10)0.0158 (2)
C30.92585 (19)0.1869 (2)0.21989 (10)0.0124 (2)
C40.70754 (19)0.08912 (19)0.10716 (10)0.0124 (2)
C50.6787 (2)0.2263 (2)0.00581 (10)0.0138 (2)
C60.5270 (2)−0.1391 (2)0.09997 (10)0.0135 (2)
H1A1.402 (3)0.062 (3)0.3667 (15)0.020 (3)*
H1B1.212 (3)0.169 (3)0.4906 (16)0.024 (4)*
H2A1.443 (3)0.498 (3)0.3429 (16)0.026 (4)*
H2B1.214 (3)0.587 (3)0.4488 (15)0.020 (3)*
H50.802 (3)0.383 (3)0.0096 (16)0.025 (4)*
H60.537 (3)−0.239 (3)0.1687 (15)0.020 (3)*
H1N10.989 (3)−0.151 (4)0.2656 (17)0.029 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0135 (4)0.0131 (4)0.0147 (4)−0.0009 (3)−0.0033 (3)0.0041 (3)
N20.0147 (4)0.0150 (4)0.0177 (5)−0.0009 (3)−0.0044 (3)0.0047 (3)
C10.0125 (4)0.0157 (5)0.0153 (5)−0.0008 (3)−0.0030 (3)0.0037 (4)
C20.0144 (5)0.0153 (5)0.0167 (5)−0.0011 (4)−0.0038 (3)0.0041 (4)
C30.0102 (4)0.0142 (5)0.0130 (4)0.0015 (3)0.0006 (3)0.0036 (3)
C40.0098 (4)0.0134 (5)0.0133 (4)0.0009 (3)0.0000 (3)0.0025 (3)
C50.0109 (4)0.0143 (5)0.0159 (5)−0.0009 (3)0.0001 (3)0.0041 (3)
C60.0128 (4)0.0140 (5)0.0142 (5)0.0002 (3)0.0003 (3)0.0049 (3)

Geometric parameters (Å, °)

N1—C31.3780 (13)C2—H2B1.015 (15)
N1—C11.4700 (12)C3—C41.4787 (13)
N1—H1N10.874 (18)C4—C51.3973 (14)
N2—C31.2944 (13)C4—C61.4000 (14)
N2—C21.4808 (12)C5—C6i1.3881 (13)
C1—C21.5479 (14)C5—H50.961 (16)
C1—H1A0.997 (14)C6—C5i1.3881 (13)
C1—H1B1.004 (16)C6—H60.970 (15)
C2—H2A1.006 (16)
C3—N1—C1107.38 (8)C1—C2—H2B112.1 (9)
C3—N1—H1N1118.4 (11)H2A—C2—H2B106.8 (12)
C1—N1—H1N1119.9 (10)N2—C3—N1116.89 (9)
C3—N2—C2106.43 (8)N2—C3—C4123.28 (9)
N1—C1—C2102.00 (8)N1—C3—C4119.77 (9)
N1—C1—H1A108.9 (8)C5—C4—C6118.99 (9)
C2—C1—H1A112.8 (9)C5—C4—C3119.82 (9)
N1—C1—H1B112.3 (9)C6—C4—C3121.19 (9)
C2—C1—H1B111.4 (9)C6i—C5—C4120.61 (9)
H1A—C1—H1B109.3 (12)C6i—C5—H5119.7 (9)
N2—C2—C1106.30 (8)C4—C5—H5119.6 (9)
N2—C2—H2A109.2 (9)C5i—C6—C4120.40 (9)
C1—C2—H2A111.9 (9)C5i—C6—H6117.6 (9)
N2—C2—H2B110.6 (8)C4—C6—H6122.0 (9)
C3—N1—C1—C29.79 (10)N1—C3—C4—C5−165.14 (9)
C3—N2—C2—C13.06 (11)N2—C3—C4—C6−161.93 (10)
N1—C1—C2—N2−7.84 (10)N1—C3—C4—C615.11 (14)
C2—N2—C3—N13.71 (12)C6—C4—C5—C6i0.46 (16)
C2—N2—C3—C4−179.17 (8)C3—C4—C5—C6i−179.29 (8)
C1—N1—C3—N2−9.24 (12)C5—C4—C6—C5i−0.46 (16)
C1—N1—C3—C4173.53 (8)C3—C4—C6—C5i179.29 (8)
N2—C3—C4—C517.82 (14)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2ii0.87 (2)2.18 (2)3.0060 (13)158.1 (15)
C2—H2B···Cg1iii1.015 (15)2.980 (15)3.8882 (11)149.6 (11)

Symmetry codes: (ii) x, y−1, z; (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2331).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Blancafort, P. (1978). Drugs Fut.3, 592–592.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chan, S. (1993). Clin. Sci.85, 671–677. [PubMed]
  • Corey, E. J. & Grogan, M. J. (1999). Org. Lett.1, 157–160. [PubMed]
  • Li, H. Y., Drummond, S., De Lucca, I. & Boswell, G. A. (1996). Tetrahedron, 52, 11153–11162.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2004). Acta Cryst. E60, o527–o529.
  • Ueno, M., Imaizumi, K., Sugita, T., Takata, I. & Takeshita, M. (1995). Int. J. Immunopharmacol.17, 597–603. [PubMed]
  • Vizi, E. S. (1986). Med. Res. Rev.6, 431–449. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography