PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2334.
Published online 2008 November 13. doi:  10.1107/S1600536808036878
PMCID: PMC2960040

6-Bromo-2-naphthol–piperazine (2/1)

Abstract

In the title compound, 2C10H7BrO·C4H10N2, the piperazine (pip) mol­ecule displays a chair conformation and is linked to two mol­ecules of 6-bromo-2-naphthol (bno) via O—H(...)N hydrogen bonds. Weak N—H(...)O hydrogen bonds from pip to bno mol­ecules result in chains propagating in [100]. The chains inter­act via C—H(...)π inter­actions.

Related literature

For related structures, see: Wang & Tang (2006a [triangle],b [triangle],c [triangle]); Wang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2334-scheme1.jpg

Experimental

Crystal data

  • 2C10H7BrO·C4H10N2
  • M r = 532.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2334-efi1.jpg
  • a = 10.1327 (4) Å
  • b = 16.2494 (7) Å
  • c = 14.3499 (5) Å
  • β = 108.238 (2)°
  • V = 2244.02 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.63 mm−1
  • T = 296 (2) K
  • 0.30 × 0.30 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.409, T max = 0.713
  • 16751 measured reflections
  • 5164 independent reflections
  • 2857 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.107
  • S = 1.00
  • 5164 reflections
  • 271 parameters
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036878/hb2836sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036878/hb2836Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Starting Fund of Shandong University.

supplementary crystallographic information

Comment

During the past decade, the field of molecular co-crystals have received considerable attention, for example, the design, construction and properties of molecular co-crystals. Recently, many co-crystals containing some organic acids and bases, have been successfully prepared and characterized by some research groups (Wang et al., 2006a,b,c). Especially, co-crystals containing hydroxyl-naphthalene with some organic bases have been synthesized and characterized (Wang et al., 2008). As part of our investigations of co-crystals containing 6-bromo-2-naphthol (bno), we now report the structure of the co-crystal, (I), of bno and piperazine.

A view of the title structure is shown in Fig. 1. The asymmetric unit consists of two independent bno molecules and one independent molecule of piperazine. In the crystal structure of (I), the piperazine molecule display a chair conformation and links with two molecules of 6-bromo-2-naphthol via O—H···N hydrogen bonds. These motifs are extended to one-dimensional chains via intermolecular edge-to-face C—H···π packing interactions (Fig. 2 and Table 1).

Experimental

A mixture of bno (446 mg, 1 mmol) and piperazine (86 mg, 1 mmol) was dissolved in methanol (10 ml), which was left at room temperature. Some colourless plates of (I0 were obtained after ten days. Analysis found (%): C, 54.28; H, 4.53; N, 5.28; requires (%): C, 54.16; H, 4.54; N, 5.26.

Refinement

All the H atoms were located in a difference Fourier map. The carbon-bound hydrogen atoms were relocated to idealised positions (C—H = 0.93 A °), and refined as riding with Uiso(H) = 1.2Ueq(C). The oxygen- and nitrogen-bound hydrogen atoms were refined as riding in their as-found relative possitions with Uiso(H) = 1.5Ueq(O, N).

Figures

Fig. 1.
A drawing of (I), with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level.
Fig. 2.
Packing diagram of (I); hydrogen bonds are shown by dashed lines.

Crystal data

2C10H7BrO·C4H10N2F000 = 1072
Mr = 532.27Dx = 1.575 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3655 reflections
a = 10.1327 (4) Åθ = 2.5–27.5º
b = 16.2494 (7) ŵ = 3.64 mm1
c = 14.3499 (5) ÅT = 296 (2) K
β = 108.238 (2)ºPlate, colourless
V = 2244.02 (15) Å30.30 × 0.30 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer5164 independent reflections
Radiation source: fine-focus sealed tube2857 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.035
Detector resolution: 9.00 pixels mm-1θmax = 27.6º
T = 296(2) Kθmin = 2.0º
ω scansh = −13→13
Absorption correction: multi-scan(SADABS; Bruker, 2001)k = −20→21
Tmin = 0.409, Tmax = 0.713l = −18→18
16751 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.107  w = 1/[σ2(Fo2) + (0.046P)2 + 0.5753P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
5164 reflectionsΔρmax = 0.52 e Å3
271 parametersΔρmin = −0.39 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.90393 (4)0.69713 (3)1.25794 (3)0.07368 (16)
O10.5253 (2)0.59439 (15)0.67377 (16)0.0644 (7)
H1B0.44230.58420.65860.097*
C10.6945 (3)0.6429 (2)0.8149 (2)0.0513 (8)
H1A0.74910.65790.77620.062*
C20.5696 (3)0.6067 (2)0.7733 (2)0.0500 (8)
C30.4883 (3)0.5817 (2)0.8315 (2)0.0528 (8)
H3A0.40370.55560.80230.063*
C40.5317 (3)0.59511 (19)0.9301 (2)0.0521 (8)
H4A0.47630.57830.96740.062*
C50.6582 (3)0.63370 (18)0.9756 (2)0.0452 (8)
C60.7088 (3)0.64743 (19)1.0793 (2)0.0520 (8)
H6A0.65530.63181.11840.062*
C70.8328 (3)0.6827 (2)1.1201 (2)0.0518 (8)
C80.9161 (3)0.70853 (19)1.0628 (3)0.0567 (9)
H8A1.00100.73411.09240.068*
C90.8716 (3)0.6958 (2)0.9645 (3)0.0558 (9)
H9A0.92730.71220.92720.067*
C100.7427 (3)0.65831 (18)0.9179 (2)0.0445 (7)
C210.1839 (3)0.6015 (2)0.5035 (3)0.0640 (10)
H21A0.18600.66020.51580.077*
H21B0.08770.58470.47570.077*
C220.2618 (3)0.5824 (2)0.4333 (2)0.0560 (9)
H22A0.21860.61040.37150.067*
H22B0.35670.60200.45970.067*
C230.3232 (3)0.4493 (2)0.5094 (2)0.0601 (9)
H23A0.41940.46580.53830.072*
H23B0.32090.39050.49740.072*
C240.2437 (4)0.4687 (3)0.5782 (3)0.0710 (11)
H24A0.14800.45100.55010.085*
H24B0.28380.43960.63960.085*
N10.2484 (3)0.5572 (2)0.5960 (2)0.0669 (8)
H1C0.19940.57500.62870.100*
N20.2616 (3)0.49323 (18)0.41684 (19)0.0567 (7)
H2A0.30470.48790.38130.085*
Br20.41434 (4)0.63994 (3)1.24310 (3)0.07881 (17)
O2−0.0266 (2)0.59459 (14)0.65772 (15)0.0587 (6)
H2B−0.09120.56040.64300.088*
C110.1170 (3)0.65519 (19)0.8032 (2)0.0436 (7)
H11A0.12870.70050.76700.052*
C120.0343 (3)0.59134 (18)0.7567 (2)0.0429 (7)
C130.0169 (3)0.52264 (18)0.8108 (2)0.0470 (8)
H13A−0.04070.47970.77950.056*
C140.0843 (3)0.51849 (18)0.9094 (2)0.0450 (7)
H14A0.07340.47200.94410.054*
C150.1700 (3)0.58307 (17)0.9598 (2)0.0388 (7)
C160.2394 (3)0.58006 (19)1.0613 (2)0.0458 (8)
H16A0.23180.53381.09730.055*
C170.3176 (3)0.6450 (2)1.1062 (2)0.0489 (8)
C180.3303 (3)0.7159 (2)1.0545 (2)0.0533 (8)
H18A0.38260.76031.08730.064*
C190.2665 (3)0.71977 (19)0.9567 (2)0.0499 (8)
H19A0.27650.76680.92250.060*
C200.1845 (3)0.65347 (18)0.9052 (2)0.0395 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0786 (3)0.0808 (3)0.0568 (3)−0.0023 (2)0.0141 (2)−0.0183 (2)
O10.0537 (13)0.0915 (19)0.0459 (14)0.0005 (13)0.0124 (11)−0.0070 (13)
C10.049 (2)0.055 (2)0.054 (2)0.0111 (16)0.0221 (17)0.0048 (16)
C20.0456 (19)0.054 (2)0.049 (2)0.0120 (16)0.0124 (16)0.0006 (16)
C30.0442 (18)0.060 (2)0.053 (2)0.0006 (16)0.0131 (16)−0.0032 (17)
C40.0430 (18)0.058 (2)0.060 (2)0.0009 (16)0.0223 (16)0.0040 (17)
C50.0406 (17)0.0422 (18)0.055 (2)0.0082 (15)0.0182 (15)0.0014 (15)
C60.051 (2)0.053 (2)0.055 (2)0.0066 (17)0.0208 (17)−0.0032 (17)
C70.052 (2)0.047 (2)0.053 (2)0.0073 (16)0.0131 (17)−0.0075 (16)
C80.051 (2)0.048 (2)0.069 (2)0.0036 (16)0.0162 (18)−0.0050 (17)
C90.050 (2)0.054 (2)0.069 (2)0.0040 (17)0.0269 (18)0.0024 (18)
C100.0386 (17)0.0399 (18)0.057 (2)0.0070 (14)0.0179 (15)0.0027 (15)
C210.0451 (19)0.072 (3)0.073 (3)0.0027 (18)0.0160 (18)−0.006 (2)
C220.0477 (19)0.067 (2)0.051 (2)−0.0040 (18)0.0116 (16)0.0067 (17)
C230.0415 (18)0.061 (2)0.072 (2)−0.0067 (17)0.0090 (17)−0.0002 (19)
C240.045 (2)0.107 (3)0.056 (2)−0.016 (2)0.0079 (17)0.021 (2)
N10.0517 (17)0.103 (3)0.0512 (18)−0.0028 (17)0.0240 (14)−0.0125 (18)
N20.0468 (15)0.073 (2)0.0480 (16)−0.0084 (15)0.0109 (13)−0.0097 (15)
Br20.0957 (3)0.0887 (3)0.0446 (2)−0.0178 (2)0.0114 (2)−0.00418 (19)
O20.0544 (13)0.0687 (16)0.0464 (14)−0.0138 (12)0.0064 (11)0.0010 (11)
C110.0386 (17)0.0419 (18)0.0513 (19)0.0011 (14)0.0153 (15)0.0094 (15)
C120.0347 (16)0.047 (2)0.0464 (19)0.0035 (15)0.0110 (14)0.0000 (15)
C130.0427 (17)0.0382 (18)0.056 (2)−0.0048 (14)0.0095 (15)−0.0056 (15)
C140.0477 (17)0.0337 (17)0.054 (2)0.0003 (15)0.0163 (15)0.0046 (15)
C150.0359 (16)0.0357 (17)0.0458 (18)0.0038 (13)0.0141 (14)0.0001 (14)
C160.0447 (18)0.0460 (19)0.049 (2)0.0014 (15)0.0182 (15)0.0042 (15)
C170.0495 (18)0.056 (2)0.0416 (18)0.0002 (16)0.0151 (15)−0.0034 (16)
C180.057 (2)0.049 (2)0.055 (2)−0.0079 (16)0.0181 (17)−0.0094 (16)
C190.057 (2)0.0390 (19)0.054 (2)−0.0082 (15)0.0184 (17)−0.0020 (15)
C200.0337 (15)0.0402 (18)0.0458 (18)0.0044 (13)0.0144 (14)0.0004 (14)

Geometric parameters (Å, °)

Br1—C71.896 (3)C23—C241.490 (5)
O1—C21.371 (4)C23—H23A0.9700
O1—H1B0.8168C23—H23B0.9700
C1—C21.353 (4)C24—N11.460 (5)
C1—C101.427 (4)C24—H24A0.9700
C1—H1A0.9300C24—H24B0.9700
C2—C31.405 (4)N1—H1C0.8336
C3—C41.361 (4)N2—H2A0.7730
C3—H3A0.9300Br2—C171.903 (3)
C4—C51.392 (4)O2—C121.360 (3)
C4—H4A0.9300O2—H2B0.8329
C5—C101.423 (4)C11—C121.369 (4)
C5—C61.431 (4)C11—C201.408 (4)
C6—C71.338 (4)C11—H11A0.9300
C6—H6A0.9300C12—C131.403 (4)
C7—C81.414 (5)C13—C141.367 (4)
C8—C91.355 (4)C13—H13A0.9300
C8—H8A0.9300C14—C151.409 (4)
C9—C101.406 (4)C14—H14A0.9300
C9—H9A0.9300C15—C161.406 (4)
C21—N11.470 (4)C15—C201.420 (4)
C21—C221.495 (4)C16—C171.356 (4)
C21—H21A0.9700C16—H16A0.9300
C21—H21B0.9700C17—C181.398 (4)
C22—N21.468 (4)C18—C191.350 (4)
C22—H22A0.9700C18—H18A0.9300
C22—H22B0.9700C19—C201.419 (4)
C23—N21.464 (4)C19—H19A0.9300
C2—O1—H1B106.3N2—C23—H23B109.8
C2—C1—C10120.2 (3)C24—C23—H23B109.8
C2—C1—H1A119.9H23A—C23—H23B108.2
C10—C1—H1A119.9N1—C24—C23109.2 (3)
C1—C2—O1118.7 (3)N1—C24—H24A109.8
C1—C2—C3120.3 (3)C23—C24—H24A109.8
O1—C2—C3121.0 (3)N1—C24—H24B109.8
C4—C3—C2120.8 (3)C23—C24—H24B109.8
C4—C3—H3A119.6H24A—C24—H24B108.3
C2—C3—H3A119.6C24—N1—C21110.0 (3)
C3—C4—C5120.7 (3)C24—N1—H1C116.5
C3—C4—H4A119.6C21—N1—H1C99.4
C5—C4—H4A119.6C23—N2—C22110.9 (3)
C4—C5—C10119.1 (3)C23—N2—H2A112.0
C4—C5—C6122.4 (3)C22—N2—H2A104.1
C10—C5—C6118.4 (3)C12—O2—H2B107.6
C7—C6—C5120.3 (3)C12—C11—C20121.1 (3)
C7—C6—H6A119.9C12—C11—H11A119.5
C5—C6—H6A119.9C20—C11—H11A119.5
C6—C7—C8121.4 (3)O2—C12—C11119.3 (3)
C6—C7—Br1120.6 (3)O2—C12—C13121.0 (3)
C8—C7—Br1118.0 (3)C11—C12—C13119.8 (3)
C9—C8—C7119.7 (3)C14—C13—C12120.3 (3)
C9—C8—H8A120.1C14—C13—H13A119.9
C7—C8—H8A120.1C12—C13—H13A119.9
C8—C9—C10121.2 (3)C13—C14—C15121.5 (3)
C8—C9—H9A119.4C13—C14—H14A119.3
C10—C9—H9A119.4C15—C14—H14A119.3
C9—C10—C5118.9 (3)C16—C15—C14122.3 (3)
C9—C10—C1122.3 (3)C16—C15—C20119.7 (3)
C5—C10—C1118.8 (3)C14—C15—C20118.1 (3)
N1—C21—C22109.2 (3)C17—C16—C15119.6 (3)
N1—C21—H21A109.9C17—C16—H16A120.2
C22—C21—H21A109.9C15—C16—H16A120.2
N1—C21—H21B109.9C16—C17—C18121.7 (3)
C22—C21—H21B109.9C16—C17—Br2119.5 (2)
H21A—C21—H21B108.3C18—C17—Br2118.7 (2)
N2—C22—C21109.8 (3)C19—C18—C17119.7 (3)
N2—C22—H22A109.7C19—C18—H18A120.1
C21—C22—H22A109.7C17—C18—H18A120.1
N2—C22—H22B109.7C18—C19—C20121.2 (3)
C21—C22—H22B109.7C18—C19—H19A119.4
H22A—C22—H22B108.2C20—C19—H19A119.4
N2—C23—C24109.4 (3)C11—C20—C19122.8 (3)
N2—C23—H23A109.8C11—C20—C15119.3 (3)
C24—C23—H23A109.8C19—C20—C15117.9 (3)
C10—C1—C2—O1178.7 (3)C22—C21—N1—C24−60.3 (4)
C10—C1—C2—C3−1.9 (5)C24—C23—N2—C2258.6 (3)
C1—C2—C3—C41.6 (5)C21—C22—N2—C23−58.0 (3)
O1—C2—C3—C4−179.0 (3)C20—C11—C12—O2−178.6 (2)
C2—C3—C4—C5−0.3 (5)C20—C11—C12—C13−0.4 (4)
C3—C4—C5—C10−0.7 (5)O2—C12—C13—C14176.8 (3)
C3—C4—C5—C6−178.7 (3)C11—C12—C13—C14−1.3 (4)
C4—C5—C6—C7178.1 (3)C12—C13—C14—C151.4 (4)
C10—C5—C6—C70.1 (4)C13—C14—C15—C16179.6 (3)
C5—C6—C7—C81.0 (5)C13—C14—C15—C200.2 (4)
C5—C6—C7—Br1−177.5 (2)C14—C15—C16—C17−178.3 (3)
C6—C7—C8—C9−1.5 (5)C20—C15—C16—C171.2 (4)
Br1—C7—C8—C9177.0 (2)C15—C16—C17—C180.6 (5)
C7—C8—C9—C100.9 (5)C15—C16—C17—Br2−178.8 (2)
C8—C9—C10—C50.2 (5)C16—C17—C18—C19−1.7 (5)
C8—C9—C10—C1−178.9 (3)Br2—C17—C18—C19177.7 (2)
C4—C5—C10—C9−178.8 (3)C17—C18—C19—C201.0 (5)
C6—C5—C10—C9−0.7 (4)C12—C11—C20—C19−177.4 (3)
C4—C5—C10—C10.3 (4)C12—C11—C20—C152.0 (4)
C6—C5—C10—C1178.4 (3)C18—C19—C20—C11−179.7 (3)
C2—C1—C10—C9−179.9 (3)C18—C19—C20—C150.8 (4)
C2—C1—C10—C51.0 (4)C16—C15—C20—C11178.7 (3)
N1—C21—C22—N258.1 (4)C14—C15—C20—C11−1.9 (4)
N2—C23—C24—N1−59.7 (4)C16—C15—C20—C19−1.8 (4)
C23—C24—N1—C2161.2 (3)C14—C15—C20—C19177.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1B···N10.821.942.743 (4)168
O2—H2B···N2i0.831.882.694 (4)163
N1—H1C···O20.832.473.235 (4)152
N2—H2A···O1ii0.772.503.184 (4)149
C4—H4A···Cg50.932.773.471 (3)133
C14—H14A···Cg2iii0.932.683.371 (3)132
C16—H16A···Cg1iii0.932.903.570 (3)130
C21—H21A···Cg2iv0.972.933.831 (3)156

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z+2; (iv) x−3/2, −y+1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2836).

References

  • Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Y.-T. & Tang, G.-M. (2006a). Acta Cryst. E62, o3833–o3834.
  • Wang, Y.-T., Tang, G.-M. & Ng, S. W. (2006b). Acta Cryst. E62, o4429–o4430.
  • Wang, Y.-T., Tang, G.-M. & Wan, W.-Z. (2006c). Acta Cryst. E62, o3396–o3397.
  • Wang, Y.-T., Tang, G.-M. & Wan, W.-Z. (2008). Acta Cryst. E64, o1754. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography